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Abstract

Blackwell’s theorem, connecting majorization to the existence of signals inducing a desired
distribution of posterior means, has numerous applications in economics. We give a new proof
of this theorem via an explicit construction. Our approach provides a concrete way to generate
signals: we demonstrate that any distribution inducible by some signal can also be induced by
a “downward-uniform signal,” which simply imposes a stochastic lower bound on the realized
state. We further study properties of these signals, indicating their suitability in static and

dynamic economic environments.

1 Introduction

Blackwell’s celebrated theorem Blackwell (1951) is a cornerstone of information economics, pro-
viding a fundamental link between the informativeness of signals and the distributions of posterior
beliefs they can induce. Specifically, the theorem establishes a necessary and sufficient condition
for the existence of a signal that generates a desired distribution of posterior means: a distribu-
tion F' of posterior means can be induced from a prior distribution G of a state variable if and
only if F' majorizes G. While Blackwell’s theorem characterizes which belief distributions are fea-
sible, it offers no guidance on how to construct signals that achieve them. The original proof is
non-constructive, providing an existence result without a concrete method for signal design.

This paper addresses this gap by providing a novel, simple, and economically meaningful con-
struction of signals that achieve any feasible belief distribution in the context of Blackwell’s the-
orem. We consider a setting where a state, 6, is distributed on an interval © according to a
distribution G, and an agent seeks to induce a posterior belief distribution F' that majorizes G and
shares the same mean. Rather than relying on abstract existence arguments, we demonstrate that

any such F' can be induced by a downward-uniform signal.
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A downward-uniform signal is constructed based on a monotone function h: © — Ry. Given
a realized state 6, the agent observes a signal s drawn uniformly from the interval [0, h(6)]. This
implies that the observed signal s provides a lower bound on the true state . Importantly, signals of
this form are frequently encountered in empirical work where data is only observed for individuals
whose underlying type exceeds a variable threshold. For instance, in studies of consumer behavior,
a purchase is only observed if a buyer’s private value exceeds a random price. This creates a
natural censoring mechanism analogous to a downward-uniform signal.

Our result shows that this simple and common signal structure is fully general: for any dis-
tribution F' and any non-atomic distribution G satisfying the conditions of Blackwell’s theorem,
there exists a function h such that the resulting downward-uniform signal induces precisely the
desired distribution F. Furthermore, we provide an explicit formula for this function h, which is
defined through a geometrically intuitive quantity « representing the difference in mass between
F and G at pairs of threshold.

This explicit construction offers several advantages beyond demystifying the process of signal
design by replacing the abstract existence result of Blackwell’s theorem with a concrete recipe. We
observe that the family of downward-uniform signals possesses a structural property that makes
it particularly convenient for modeling information aggregation across sources and information
accumulation over time. Specifically, observing a sequence of conditionally independent downward-
uniform signals is equivalent to observing a single downward-uniform signal whose function h equals
the product of the individual functions h;.

This mirrors a well-known invariance property of Gaussian signals under aggregation. However,
downward-uniform signals offer greater flexibility: their invariance holds for arbitrary distributions
F and G, whereas the Gaussian case requires both to be Gaussian. As a result, in Blackwell’s
theorem, it is without loss of generality to assume that F' is generated by a sequence of i.i.d.
signals. That is, for continuous state spaces, signals are effectively infinitely divisible. This is
in sharp contrast with the finite-state setting. For instance, in binary-state persuasion, binary
signals are known to be optimal, but such signals are generally not equivalent to a combination of
informative, conditionally independent signals.

We also examine downward-uniform signals in specific economic environments, highlighting
their connection to classical econometric questions and to models of information provision in both

static and dynamic settings.

The paper is structured as follows. Section 2, which follows the discussion of related litera-
ture, presents our main result: a constructive version of Blackwell’s theorem, together with the
underlying intuition. Section 3 examines key properties of downward-uniform signals and their
applications to specific economic environments. The main proofs are outlined in the body of the

paper, while the full formal arguments and technical details are provided in the appendices.



Related Literature Blackwell’s seminal work Blackwell (1951, 1953) focused on the comparison
of signals by informativeness, characterizing belief distributions that can be induced by garbling
a given signal. This result has become one of the central tools in information economics, offering
a tractable way to parameterize belief distributions that an informed sender can induce; see, e.g.,
Gentzkow and Kamenica (2016); Kolotilin (2018); Dworczak and Martini (2019); Ivanov (2021);
Candogan and Strack (2023); Bergemann, Heumann, and Morris (2022). While specific classes
of belief distributions are known to be inducible by simple signal structures—e.g., bi-pooling sig-
nals suffice for optimization of a convex objective Kleiner, Moldovanu, and Strack (2021); Arieli,
Babichenko, Smorodinsky, and Yamashita (2023)—the question of how general belief distributions
can be induced remained unaddressed in the economic literature prior to our work.'

While the distribution of posterior means plays a central role in many economic settings, a recent
paper by Yang and Zentefis (2024) has shown that in some environments, the relevant object is the
distribution of posterior medians or—more generally, posterior quantiles—and characterized such
feasible distributions F' for a given prior GG. As with the Blackwell theorem, their characterization
is non-constructive and does not yield a simple recipe for constructing a signal that induces the
target distribution. This issue has been recently addressed by Kolotilin and Wolitzky (2024). While
conceptually closest to our work, their setting and methods differ substantially since posterior
quantiles behave quite differently from means. In particular, the key idea in their construction is
to design a signal that generates maximal ambiguity in the quantile, so that different tie-breaking
rules yield all feasible distributions. In contrast, posterior means are uniquely defined, and one
must construct a separate signal tailored to each target distribution F.

Our results also connect to the growing literature on reduced-form approaches to Bayesian
mechanism design Kleiner, Moldovanu, and Strack (2021); Ashlagi, Monachou, and Nikzad (2021);
Nikzad (2022). This literature simplifies multi-agent design problems by reformulating them in
terms of one-agent marginals of a mechanism—the so-called reduced mechanisms, representing the
expected outcome for an agent conditional on her type. Blackwell’s theorem characterizes feasible
reduced mechanisms when interpreting the agent’s type as a signal and the outcome as a state.
Hart and Reny (2015) pioneered this connection, studying feasible reduced forms in single-good
allocation. Our construction can be seen as a tool for designing mechanisms that achieve desired
reduced forms.

In the mathematical literature, Strassen’s theorem (Strassen (1965), Theorem 8) generalizes

Blackwell’s theorem to multiple dimensions and signal sequences. This theorem states, without

IKleiner, Moldovanu, and Strack (2021); Arieli, Babichenko, Smorodinsky, and Yamashita (2023) characterized
the extreme points of the set of distributions that majorize a given one, showing that each such extreme distribution
can be induced via bi-pooling signals. By the Choquet theorem (Phelps, 2001), any majorizing distribution can
be expressed as a weighted average of these extremes, and thus is in principle inducible via a randomization over
bi-pooling signals. However, this yields no tractable description of the signal, as the Choquet theory is inherently
existential. Finding an explicit decomposition of a majorizing distribution into extreme ones remains an open

problem.



economic context, that a distribution F' majorizes G if and only if there exists a martingale (X,Y)
where X ~ F and Y ~ G.2 Our paper provides an explicit construction of such a joint distribution
(X,Y) for given F and G. In general, such a joint distribution is not unique, and several alternative
constructions have been proposed in the literature on martingale optimal transport. Notable
examples include the left-curtain coupling (Beiglbock and Juillet, 2016; Hobson and Norgilas,
2022) and related constructions based on Skorokhod embeddings into Brownian motion (Hobson,
2011; Beiglbock, Henry-Labordere, and Touzi, 2017).

Our construction differs in several important aspects. It is arguably simpler, possesses a clear
economic interpretation, and, crucially for information and mechanism design, focuses on gener-
ating X given Y (e.g., sampling a signal given the state). Existing mathematical constructions
are convenient for sampling Y given X, but the conditional distribution of X given Y lacks a
known closed-form expression. Our approach yields equally simple forms for both conditional
distributions, X|Y and Y| X, though we focus on the former for economic relevance.

Finally, our analysis of optimism in learning connects to a rich literature on dynamic information
acquisition and belief updating. Dubins and Gilat (1978) and Hobson (1998) studied maximal
martingales, while Koh, Sanguanmoo, and Zhong (2024) analyzed persuasion in optimal stopping
problems. Khantadze, Kremer, and Skrzypacz (2025) studied the case of multiple actions. Building
on the “conclusive bad news” martingales of Dubins and Gilat (1978), we contribute a novel

characterization of the most optimistic martingale under informational constraints.

2 Explicit Blackwell’s Theorem

This section presents our main result: a constructive version of Blackwell’s theorem using downward-
uniform signals. We show that any feasible posterior distribution can be induced by a signal that
is uniformly distributed in an interval whose upper bound depends on the realized state. Before
describing the construction, we briefly discuss the key concepts of majorization, garbling, and
Blackwell’s theorem.

Let © = (0,0) C R be a possibly unbounded interval, allowing for § = —o0o or § = +oo.
We consider a state 6 drawn from this interval according to a cumulative distribution function
(CDF) G. Throughout the paper, we identify distributions with their CDFs. We refer to G as the

~

prior distribution and primarily focus on non-atomic priors. The integrated CDF is denoted by G

Gla) = | Gloan
Definition 1. For CDF's on © with finite expectation, we say that F' majorizes G if

ﬁ(m) < @(m) forall z€0O and 1:"\(5) = G().

2Recall that (X,Y) is a martingale if F[Y'|X] = X. Interpreting Y as a state and X as a signal, by the martingale
property, the posterior mean E[Y|X] equals the signal itself and thus is distributed according to F'.



The majorization is strict if the inequality is strict for all z € ©.

Majorization formalizes the idea that the distribution F' is less dispersed than G. The concept
was first introduced by Hardy, Littlewood, and Polya (1929) for vectors in Euclidean space, and
our definition follows the formulation in Kleiner, Moldovanu, and Strack (2021).

A signal provides information about 8 ~ G, and we are interested in the resulting posterior
mean after observing the signal. Formally, let S be a measurable set of signals. A signal about 6 (or
garbling) is a mapping 7 : © — A(S) that provides noisy information in the form of s ~ 7 (8) which
yields a posterior mean E[f|s]. The induced distribution of the posterior means is the distribution
of E[f|s] where s is drawn in two steps: first sample § ~ G and then draw s ~ S(6).

If a distribution of posterior means F' is induced by some signal s, then a simple application
of Jensen’s inequality implies that F majorizes G. Blackwell’s theorem establishes the other

direction.*

Theorem 1 (Blackwell (1951)). If a distribution F majorizes a prior distribution G, then there

s a signal that induces the distribution of posterior means F.

To illustrate the applicability as well as the limitations of Blackwell’s theorem consider the

following example.

Ezample 1. Let F = Beta(1,1) and G = Uniform([0, 1]). Blackwell’s theorem makes it elementary
to check that F is inducible from G by verifying the majorization condition:

xt a?

F(z) =2® — vy < 5= G(z) for every z € 0,1].

However, the question of which garbling of G induces the Beta(1,1) distribution remains unclear

from the theorem and its original non-constructive proof.

As in the example above, we are interested in how, given a prior G and a desired posterior F'
majorizing G, we can construct a signal that induces this posterior. To formulate the answer, we

introduce the concept of a downward-uniform signal.

Definition 2. A downward-uniform signal is defined by a non-decreasing function i : © — R,.

Given state 6, the signal s is drawn uniformly from the interval [0, h(6)].

Intuitively, the signal s provides a noisy lower bound on the true state 8. The higher the state,

the higher the potential range of signals. Figure 1 illustrates this concept.

3In the economics literature, majorization appears under various names, including second-order stochastic domi-
nance (for distributions with the same mean), mean-preserving contraction, reverse convex order, the Lorenz (1905)

order, or having less risk in the sense of Rothschild and Stiglitz (1970).
4Blackwell (1951)’s original formulation is a particular case, where the state § ~ G itself is the posterior beliefs

about some binary w € {0, 1} induced by a signal s; and the question is what belief distributions F' can be induced
by garbling s1. Our formulation is a particular case of (Strassen, 1965, Theorem 8)—a standard reference in math
literature—applicable to the multidimensional case and sequential garbling. A related result was obtained by Hardy,

Littlewood, and Polya (1929).



€ s ~ Uniform

> 0

Figure 1: A downward-uniform signal. The myblue curve represents the function h(6). For a given

state 0, the signal s is drawn uniformly from the interval [0, h(6)].

2.1 The Main Theorem

We are now ready to state our main result, the constructive counterpart to Blackwell’s theorem.

Theorem 2 (Constructive Blackwell Theorem). If a distribution F' strictly majorizes a non-atomic
prior distribution G, then there exists a downward-uniform signal that induces the distribution of

posterior means F'.

This theorem refines Blackwell’s theorem by guaranteeing that the desired posterior distribu-
tion, F', can be garbled from the prior G via a signal that has a specific form—a downward-uniform
signal. We stress that while the distribution G is assumed to have no atoms, no continuity as-
sumptions are imposed on F' since atomic posterior distributions often originate endogenously as
a result of information design. The assumption of strict majorization assumption can be relaxed;
see Remark 1 below.

This downward-uniform signal from Theorem 2 can be expressed through the primitives F'
and G, justifying the constructive nature of the result. The function h: ® — R, which defines

the downward-uniform signal, is pinned down up to a multiplicative factor and is given by

h@)zcﬂﬂ-exp(/:(yl)dGﬁﬂ), (1)

(z
where ¢y € R is an arbitrary interior point of © and «(¢) is defined geometrically as follows (Fig-
ure 2).> We trace a tangent line to the graph of the integrated CDF é(a:) at a point x = ¢ and find
a point z = T to the right of ¢, where this line intersects the graph of the integrated CDF F(z).
The quantity «(t) is then defined as the difference between the slopes of the integrated CDF of F’
at T' and the integrated CDF of G at ¢t. Formally, a: © — (0,1) is given by

a(t) = F(T)—G(t), where Te(t,0) solves G(t)+ (T —t)G(t)=F(T). (2)

Although atoms of F' lead to jumps in « and h, both functions remain right-continuous.

Ezample 2. Let F = Beta(1,1) and G = Uniform([0,1]) as in Example 1. Theorem 2 suggests
the following garbling for this pair of distributions. For every 6 ~ Uniform([0,1]) draw a signal

5For every interior point t € ©, due to a strict majorization, the function a(z) is bounded away from 0 in the
interval [to,t] (or in the interval [¢,¢o], depending on their order). Therefore, for every interior point ¢ the integral

in Equation (1) is well defined.



Figure 2: «(t) is the difference between the slope of F (lower curve) at T and the slope of G (upper
curve) at t.
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Figure 3: Downward-uniform garbling inducing F' = Uniform ({3, 2}) from G = Uniform([0, 1]).

s ~ Uniform([0, h(6)]) = Uniform([0, 3/2]). A simple calculation using the Bayes formula verifies
that s results in the posterior mean distributed according to Beta(1,1).

The identity h(8) = #3/? is obtained as follows. First we compute T(t) = v/t (see Figure 2 for
the functions F\(x) =23 - ””—24 and G(z) = ””—22), and hence a(t) = F(T) — G(t) = 2t(1 — v/t). By

formula (1), we get

h(t) = 2t(1 — V/t) exp (/t de)
=2t(1 — V/t) exp (log(\/i) —log(1 — V1) + c) = 2¢ct3/?

The constant factor 2e® plays no role and can be replaced with 1.

The next example provides intuition on how the behavior of h translates into the behavior of F.
A sharp increase of h creates an interval in F' carrying little mass, while regions where h does not
change much lead to condensation of mass. These phenomena are particularly stark in the case of

piecewise-constant h that lead to atomic F'.

Ezample 3. Consider atomic F = Uniform({}, %}) and G = Uniform([0, 1]). It is easy to verify
that F' majorizes G. One can either use formula (1) or infer directly that the step function h equal
to i for x < % and 1 for x > % has the desired properties. The resulting garbling is depicted in

Figure 3.

Remark 1 (Non-strict Majorization). The case of non-strict majorization can be reduced to sepa-



rate strict majorization instances. Consider F' majorizing G. The integrated CDF's are continuous,
and thus {x : é(m) > ﬁ(x)} is an open set, which can be represented as the union of countably
many open intervals {I,,}nen. Let s, be a downward-uniform signal for the pair of distributions
obtained by conditioning F' and G to the interval I,,. To garble G into F', one can send the pair of
signals (n, s,,) where n € N reveals which interval the state belongs. Outside of U,, I, realizations

of 6 are completely disclosed.

The economic interpretation of a(¢) is explored in Section 3 (see Remark 2). We now discuss
an intuition behind the theorem and the origin of the Formula (1). The first step is understanding

specific properties of belief distributions induced by downward-uniform signals.

2.2 Beliefs Induced by Downward-Uniform Signals

This section characterizes the distribution of posterior beliefs induced by downward-uniform sig-
nals. For clarity of exposition, we assume that the distribution G of the state 6 has density g, that
is G is absolutely continuous. Conditionally on 6, the downward-uniform signal s is drawn from
the uniform distribution on the interval [0, h(0)]. Thus, the density of s conditional on 6 is given
by p(s|f) = ]l{sgh(g)}ﬁ. Let g(0|s) be the density of the conditional distribution of € given the
signal s. Using Bayes’ formula:

)
(s16)g(0) Lis<n(o)} 7(g)

g(0ls) = =2 - Do
Jap(s]0)g(6)do Jo:nioyzs iy 49

We see that for any signal realization, g(f|s) is an upper tail of the same distribution with density
proportional to %. In other words, observing different signals only changes our beliefs about the
relative probabilities of states within the upper tail, not the shape of the distribution within that
tail. We call it the identical quantiles property.

The posterior mean is the average of 6 with respect to g(6|s):

(9)
f@:h(@)ZS G%de

9(0) 19
fa:h(@)ZS %de

B[o]s] :/Reg(a\s)de: 3)

It is easy to see that the identical quantile property implies the following monotonicity property:

the posterior mean E[f]s] is monotone in s; i.e., higher signals lead to higher posterior means.®

Corollary 1. Beliefs induced by downward-uniform signals exhibit identical quantiles and mono-
tonicity properties. In particular, these properties are consistent with inducing any distribution F'

magjorizing G.

We will see that these properties are important in future sections.

6 A stronger monotonicity property holds: the belief after observing a signal s—i.e., the conditional distribution
of the state given this signal—first-order stochastically dominates the belief after observing a signal s’ < s. This is

immediate as these beliefs are different tails of the same distribution.



2.3 Intuition Behind the Main Theorem

This section provides a heuristic derivation of the formula for h, the function defining the downward-
uniform signal that induces the posterior distribution F' from the prior G. While Appendix A
establishes the formula’s validity for general F' and G, here we focus on the intuition behind its
functional form without paying attention to technical assumptions we make along the way. For
further simplicity, we focus on the case where both G and F' admit densities g and f, which are
positive on [0,1] and zero elsewhere.

We begin by considering the cumulative distribution function of the signal s, denoted by K (s).
Recall that the conditional density is given by p(s|0) = ]l{sgh(g)}%. Thus,

K = | 1 ([ wtsoras)acera = [ 1 ([ Fezmieras) aioyan

Since only the indicator function depends on s’ in the inner integral, we can rewrite this as

K(s) = /01 i% (/O 1{s’<h(0)}d8/) df

= 1@min S
= | 45 mintao). a0

D) o0,
B /t9:h(9)<s h(e)h(e)de * A:h(0)>s h(e) @

9(9)
_ 9(0)d0 + 5 / o),
/0:h(9)<s ( ) 0:h(0)>s h(a)

Now, consider a value ¢ € [0, 1] and define T' = E[f|s] for s = h(t). By the monotonicity property
of downward-uniform signals, E[f|s] < T if and only if s < h(t). By the choice of T and ¢, the

following identity holds:

Substituting the formula for K (s) and simplifying h(f) < h(t) to 6 < ¢ (which is valid because h
is monotone), we obtain X

F(T) = G(#) + h(t) /t %d@. )
Since T can be viewed as a function of ¢, we define a(t) = F(T) — G(t). Thus,

1
at) = h(t) /t %d@. (5)
We now show that h can be expressed in terms of « via formula (1). At this stage, « is not
yet expressed in terms of the primitives F' and G as it depends on 7. However, we will later
demonstrate that 7' can be expressed in terms of the primitives via the identity (2).
Taking the logarithm of both sides of (5) and then differentiating with respect to ¢, we get

(log )’ = (log h)" —

0)
o

Expressing the integral in the denominator using (5) and rearranging, we arrive at

(logh) = (loga)’ + g
a



Integrating both sides yields
logh =loga + / g,
e

which is equivalent to (1).
Finally, we derive the identity (2) for T = T(t). Using the formula (3) for F[f|s] and the
definition of T', we have
Ji 08 do
i Dan
Multiplying by the denominator and differentiating both sides with respect to t gives
t L g(0 t
~T(t) - th; +T’(t)/t %de =—t- hgti
Multiplying both sides by h(t) and expressing the integral using (4) results in

=T(t)- g(t) + T'(t) - (F(T (1)) = G(t)) = —t - g(t).

Since T'G(t) + Ty(t) is the derivative of TG(t) and T'F(T) is the derivative of F(T), we can

integrate both sides and obtain

F(T) - TG(t) = C — /0 zg(z)dz,

where C' is some constant. Integrating by parts on the right-hand side and reshuffling the terms,
we get

Gt)+G(t)- (T —t)+C = F(T)

Setting ¢ =1 we get T =1 and find that C' = 0, thus establishing (2).

3 Properties of Downward-Uniform Signals, Examples, and
Applications

For a given prior distribution G of a state # and a target distribution F of induced beliefs,
downward-uniform signals are just one among many possible ways to contract the former to the
latter. In this section, we study the specific properties of the downward-uniform garbling that sin-
gle it out from other information structures capable of inducing the same distribution of posterior
means.

To see that many different garblings can induce the same F' from a given G, consider an
example where the prior is G = Uniform([0,1]) and the target distribution of posteriors is F =

12)

Uniform({3, 5§}). The downward-uniform signal provides one way to achieve this by contracting

a fraction of 2 of the mass of G in the interval [§,1] into an atom on 2 while the remaining

mass is contracted into an atom on % as depicted in Figure 3. There are however infinitely many

other garblings that result in the same F' but differ in the distribution of posterior means induced

conditionally on realized state 8. For instance, Figure 4 illustrates a structurally different garbling

10



that contracts the mass of the interval [%, 1—72] into an atom on % and the remaining mass into an
atom on %

State Space ©

1/3 2/3
Posterior Mean Space

Figure 4: A non-monotone garbling inducing F' = Uniform({$, 2}) from G = Uniform([0, 1]) maps

intermediate states to the low posterior and extreme states to the high posterior.

A social planner whose objective depends only on the induced distribution of posterior means F,
as in Dworczak and Martini (2019), would be indifferent between all such signals. For such a
planner, downward-uniform signals simply offer one convenient choice among many. However, in
many settings the planner’s cares about the posterior means induced for each state realization,
which makes the choice of garbling no longer a matter of convenience but decision that affects
outcomes.”
Below, we discuss various environments where downward-uniform signals arise naturally. We

use the context provided by these environments to highlight specific properties of downward-

uniform signals and joint distributions of states and beliefs they induce.

3.1 The German tank problem and independent downward-uniform sig-

nals

The German tank problem is a classic statistical problem of estimating the size of a population
from which a random sample is drawn.® A version of this problem is tightly related to downward-
uniform signals.

Let the state 6 be the total number of items produced, which we model as a continuous variable
for simplicity. An analyst holds a prior belief G about 6. The items are enumerated from 0 to 6,

so a randomly drawn item s has a serial number uniformly distributed on [0,6]. The observation

"For instance, the joint distribution of the state and induced beliefs is critical , for instance, in persuasion
to handle state-dependent objectives (Dworczak and Kolotilin, 2024; Kolotilin, Corrao, and Wolitzky, 2025) and
welfare effects in persuasion Doval and Smolin (2024), recommendation system and public recognition schemes

design (Saeedi and Shourideh, 2020; Vaeth, 2024), and martingale optimal transport (Beiglbock and Juillet, 2016).
8The name originates from its application by Allied forces during World War II to estimate the monthly produc-

tion rate 6 of German tanks from the serial numbers on captured vehicles. The same statistical technique has since
been used to estimate the scope of production in various contexts and also in numerous other applications, ranging

from software bugs to ecology; see a survey by Simon (2024).

11



of a single serial number s is therefore a downward-uniform signal with the function h(6) = 6.

A more realistic scenario involves an analyst observing a sample of k items with serial numbers
S1y...,8k, drawn independently from the uniform distribution on [0,(#)]. This is equivalent
to observing a collection of downward-uniform signals that are i.i.d. conditional on the state.
Sequences of conditionally i.i.d. signals also arise in models of learning, where agents accumulate
information over time or from multiple sources.'’

In general, combining such signals does not preserve the original signal structure. For example,
the joint observation of two conditionally i.i.d. binary signals s; € 0,1, in general, cannot be
reduced to a single binary signal, as the realizations {(0,0)}, {(1,0),(0,1)}, and {(1,1)} yield
different posteriors. Partially for this reason, the literature has emphasized asymptotic learning,
where the number of signals grows large and detail-free conclusions become possible.

A notable feature of downward-uniform signals is that the family is closed under combination:
any finite collection of conditionally independent downward-uniform signals—possibly with differ-
ent distributions—is equivalent to a single downward-uniform signal. This holds even when the
individual signals differ, as long as each is downward-uniform relative to its own bounding function.

Two signals s and s’ are said to be equivalent if they induce the same joint distribution over

the state and the posterior mean.

Proposition 1. Let sq1,...,s, be conditionally independent downward-uniform signals with cor-
responding bounding functions hq(0), ..., hi(0). Then the collection (s1,...,sk) is equivalent to a

single downward-uniform signal with bounding function

This property of downward-uniform signals suggests that they form a tractable class for mod-
eling sequential learning and information aggregation from multiple sources. It is instructive to
compare them with the widely used Gaussian framework. In that setting, the prior G is Gaussian,
and each signal takes the form s; = 8 +n);, where the shocks 7; are Gaussian. Aggregating such sig-
nals yields another signal of the same form. Downward-uniform signals exhibit a similar invariance
under aggregation, but offer greater flexibility: they accommodate arbitrary prior distributions G
and allow each signal to induce an arbitrary posterior mean distribution F;.

The proposition is proved in Appendix B. To build intuition for the product formula, consider

the likelihood of observing a single downward-uniform signal s’ with bounding function A’, and

9Downward-uniform signals with general h, can capture the situation where h(#) is the number of potentially
available produced items and € is a parameter of affecting the scope of production. For instance, § may represent
the number of produced items including those not yet distributed, a factor of production such as capital or labor,

or just a statistic of the total production that the analyst is interested in.
10See, for instance, Moscarini and Smith (2002); Azrieli (2014); Cripps, Ely, Mailath, and Samuelson (2008); Mu,

Pomatto, Strack, and Tamuz (2021); Frick, Iijima, and Ishii (2023, 2024).
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compare it to the likelihood of observing a collection of signals s = (sq,. .., sk):

1
hi(6) ]l{siéhi,(@)}'

k
1
L(s'10) = 0) Lo <o)y L(s|0) =

i=1

The second expression simplifies by noting that the product of indicators equals a single indicator
1{n(s)<0}, where m(s) = max; h; ' (s;). Setting h(0) = Hle hi(8), the likelihood becomes
L(s/0) = ﬁ L me)<0y.

Comparing the two expressions suggests that, to match the posterior beliefs induced by the collec-
tion of signals s using a single signal s’, one should take A’ = h. This observation motivates the
product formula. In Appendix B, we formally establish the equivalence by showing that a suitable
monotone transformation of the sufficient statistic m(s) yields a valid downward-uniform signal,
and address technicalities arising from possible discontinuities and flat regions in the functions h;.'"

Proposition 1 implies a general structural property of garblings: their infinite divisibility under

a non-atomic prior.

Corollary 2 (IID Blackwell Theorem). If a distribution F' strictly majorizes a non-atomic prior
G, then for any integer k > 1, there exist signals s1,..., Sk, i.i.d. conditional on the state, such

that F is induced by the joint observation of si,...,Sk.

Indeed, by Theorem 1, the distribution F' can be induced by a downward-uniform signal with
bounding function h given by (1). By Proposition 1, a collection of k conditionally i.i.d. downward-
uniform signals with bounding functions h; = h'/¥ also induces F.

The IID Blackwell Theorem shows that information about a continuous state can always be
decomposed into a sequence of conditionally i.i.d. signals. This implies that acquiring information
over time or from multiple informative independent sources imposes no constraint on the eventual
belief distribution of the receiver. Consequently, in persuasion problems with a continuous state
space, requiring the receiver to obtain information through several i.i.d. signals does not reduce
the sender’s optimal value.

This stands in sharp contrast to the binary-state setting of Kamenica and Gentzkow (2011),
where optimal signals are binary. Due to the atomic nature of the state space, a binary signal
cannot be replicated by any collection of informative, conditionally independent signals unless one
of the original signal’s realizations fully reveals the state. As a result, imposing a multi-signal

structure in that context results in a loss for the sender.

3.2 Optimism in learning

Consider a Bayesian agent whose posterior mean evolves over time due to information arrival. We

refer to this evolving posterior mean as a learning process. Suppose an analyst observes snapshots

H1n fact, we prove a stronger result: the single-signal and multi-signal models induce not only the same joint
distribution over (6, E[0|s]), but also the same joint distribution over (6, u), where p € A(©) denotes the posterior
belief.
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of the agent’s belief distribution at two points: at ¢ = 0, it’s given by F, and at t = 1, by G,
where G is majorized by F. From these snapshots, the analyst wants to make inferences about
the agent’s beliefs during the period ¢ € [0,1]. A natural question arises: how optimistic can the
agent’s beliefs become during this interval? This notion is captured by 7-optimism (Definition 3).
A related question is: which learning processes maximize optimism?

Formally, the posterior mean of the Bayesian agent is captured by a continuous-time martingale
(Xt)te[o,1] With initial distribution X¢ = F' and terminal distribution X; = G. By a splitting lemma
argument, exposure to information results in a martingale of posterior means and vice versa; every
martingale of posterior means can be a result of some exposure to information.'> Henceforth, we

identify learning processes and continuous-time martingales.

Definition 3. The 7-optimism of an agent in the learning process X = (X;).e[0,1] is defined by

Opt,(X)=P[3t€(0,1]: X, >7] =P {m[aa)l(]Xt > 7':|
telo,

Consider a scenario in which the analyst observes the correlation between F and G. Namely,
the analyst can trace which types of agents ended up having which posterior mean as a function of
their initial beliefs. Given a correlation between F and G can one characterize the most optimistic
learning process?

For clarity of exposition, we assume that the state space is © = [0,1].1* We consider the

following revelation strategy.

Definition 4. Given a continuous terminal distribution G, the Gradual Ezposure to Bad News
(GEBN) learning process at time t € [0, 1] exposes the agent to the realization of G in case it lies

in the interval [0, t]. Otherwise, no further information is provided.
The most optimistic learning process turns out to be the above GEBN.

Proposition 2 (Essentially, Dubins and Gilat (1978)). For every 7 € [0,1], the GEBN learning
process mazximizes T-optimism across all learning processes with the same correlation of initial and

terminal distributions F' and G.

The proof of Proposition 2 is relegated to Appendix B. Dubins and Gilat (1978) proved this
result for a point mass F, and the idea behind the proof in the appendix is to apply their result
pointwise, conditional on each realization of Xy. For two-point G and one-point F', a version of
this result has recently appeared in an application to dynamic implementation (Koh, Sanguanmoo,

and Uzui, 2023).

12See Strassen (1965) for discrete time and Kellerer (1961) for continuous time.
13For a general ©, the Definition 4 is modified so that, at time t € [0,1], all the realizations that belong to the

bottom t-quantile of G are revealed rather than realizations whose value is below ¢. This analog of the GEBN
process is the relevant one also in the more general case in which G admits atoms. All the results in this section

hold in these more general cases for the quantile variant of the GEBN process.
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This simple extension of Dubins and Gilat (1978) shows, given a correlation between F' and
G, the best way to reveal information to maximize 7—optimism is by gradually revealing bad
news. A natural question is whether there exists an “optimal correlation” between F' and G that
globally maximizes 7—optimism. We provide a positive answer to this question and show that the
correlation induced by the downward-uniform garbling is the optimal one.

We start by providing a general upper bound on optimism that applies to all correlations.
Recall that (¢, G(t)) for t = T—1(r) is the tangency point of the tangent line to G that passes
through (7, F(7)) (see Figure 2), and G(T (7)) is the slope of this tangent.

Proposition 3. For every learning process with initial distribution F and terminal distribution

G, the agent is T-optimistic with a probability of at most 1 — G(T~1(7)).

The proof intuition of Proposition 3 is relegated to the end of this section, while the formal
proof appears in Appendix B.

Proposition 3 is a generalization of the Hardy-Littlewood maximal inequality, which corresponds
to F' being a point mass. Hardy-Littlewood inequality provides a bound on 7-optimism as a function
of the terminal distribution G only. The probability for T7-optimism is bounded from above by the
mass of the top quantile whose conditional expectation is 7.!* In our notation, it claims that the
probability of 7-optimism is bounded by 1 — s where s is the slope of the tangent to G that passes
through the point (7, E[G] + 7 — 1). Proposition 3 argues that this bound can be improved by
considering the initial distribution too; The point through which the tangent passes increases from
(1, E[G] + 7 — 1) to (7, F(7)) which increases this slope; see Figure 5.

i~

(1, E[G])

Figure 5: «(t) is the difference between the slope of F (lower curve) at T" and the slope of G

(upper curve) at t.

The following example demonstrates that the upper bound on the optimism from Proposition 3

14The Hardy-Littlewood inequality immediately implies Doob’s maximal inequality. For a distribution G with
zero mean E[G] = 0 and P[G > 0] = p, we denote by G4 the distribution that equals 0 in the top g-quantile of G
and 0 otherwise, and we denote by ¢(7) the mass of the quantile whose expectation is 7. Now the Hardy-Littlewood
inequality implies

a(r) -7 _ ElGyn)] _ BlG,) _ Elmax(G,0)]

T - T T

Opt, < q(1) =

which is precisely Doob’s maximal inequality.
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may be (and typically is) strictly higher than the level of optimism achieved by the GEBN process

of Proposition 2 for given correlation of F' and G.

Ezample 4. Let F = Uniform({3, 2}) and let G = Uniform([0, 1]). The correlation of F' and G is

given by G|(F = %) = Uniform([%, 1—72}) and G|(F = %) = Uniform([0, %) U (1—72, D-
Figure 6 depicts the dynamic posterior belief conditional on the event that the agent has not

been exposed to the realization of G yet in the GEBN policy.

Figure 6: The upper function is the posterior of the agent with initial belief % conditional on the
state not being revealed till time ¢. The lower function is the posterior of the agent with initial

belief % conditional on the state not being revealed by time ¢. If the agent has initial belief %, the

i
127

state is revealed with probability 1 by time t = therefore the function is defined only for ¢ < 1—72

—_
| |

|

RN oo Rl

!

W=

From these calculations, we can deduce the probability of 7-optimism for every value 7, and

it is depicted in Figure 7. For the case of F = Uniform({}, 2}) and G = Uniform([0, 1]), one can
calculate the bound of Proposition 3 on 7-optimism (for arbitrary correlations of F' and G); its
graph is also depicted in Figure 7.

Even though the learning process is the most optimistic one (for the exogenously given correla-

tion), one can see that the GEBN learning process fails to reach the upper bound for % <7< %.

This example raises the question: Are there correlations that induce higher optimism than others
under the most optimistic GEBN learning process? The answer to this question is positive. There
exists a correlation that simultaneously maximizes 7-optimism for all values of 7. This correlation

is the one induced by the downward-uniform garbling from Theorem 2.

Theorem 3. If the correlation between F' and G is given by the downward-uniform signals, then
the GEBN learning process induces T-optimism with the best-possible probability 1 — G(T~(1)) for

every T € [0, 1].

In particular, we see that the bound from Proposition 3 is not only tight but also admits a

correlation that is simultaneously optimal for all thresholds. The proof intuition of Theorem 3 is
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Figure 7: The lower function captures the probability of 7-optimism for the given correlation in
the example (i.e., the upper-bound follows from Proposition 2). The upper function captures the

upper bound on optimism given by Proposition 3.

P[3t: X, > 7]

—
Slor ol cono

W= = — = = — = — —

relegated to the end of this section, while the formal proof appears in Appendix B.

Intuitions via Persuasion Optimism has a natural interpretation in the context of dynamic
persuasion, where the learning process is not exogenously given but rather is designed by a strate-
gic sender. This interpretation is also convenient for building intuition about the results on
T—optimism presented above.

Consider a dynamic setting in which a partially informed sender reveals information over con-
tinuous time to persuade a partially informed receiver (i.e., the agent) to make an irreversible
adoption decision. Let {L, H} be a binary state reflecting a product’s low or high quality. The
distribution G € A([0,1]) captures the partial information (i.e., distribution over beliefs) of the
sender about the quality being high. We assume that in the dynamic setting, the agent adopts
at the moment once her posterior mean (i.e., her posterior about the high quality) exceeds some
threshold 7.'° Notice that T-optimism is equivalent to adoption in this dynamic persuasion setting,
which the sender aims to maximize.

More formally, F' is the receiver’s initial information. The sender is more informed than the
receiver and holds the private information G that is majorized by F. The sender is allowed to
reveal information over time and hence can design the martingale (X;);c[0,1]- Since the adoption
action is irreversible, we can assume without loss of generality that X; = G because revealing
further information can never harm the sender.

The correlation between F' and G can be either exogenously given or designed by the sender. We

5 Immediate adoption can be rationalized if the interaction occurs over time [0, 00), the receiver is impatient
(namely, has a discount factor § < 1), and the sender is patient (namely, has an average-limit utility). In such a
setting, immediate adoption is without loss of generality since the sender can arbitrarily slow down any information

revelation policy, thus enforcing immediate adoption.
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first describe an interpretation of an exogenously given correlation. Before the interaction, both the
sender and the receiver observe a public signal Sy, and the sender additionally observes a private
signal Sy, This creates a setting in which the correlation is exogenously given. Proposition 2

can be formulated in the context of dynamic persuasion as follows.

Corollary 3 (Reformulation of Proposition 2). In a setting with an exogenously given correlation

between F' and G, the GEBN policy is optimal for the sender.

Another variant of the persuasion problem considers a sender who designs the correlation be-
tween F and G. The sender is partially informed about the state with the distribution of posteriors
G. Before the dynamic interaction starts, the sender is required to send partial information to the
receiver that will be at least as informative as F.'6 In this setting, the policy of the sender con-
sists of two parts: the garbling of G to F' and a continuous time information revelation policy.

Proposition 3 and Theorem 3 specify the optimal policy in this setting.

Corollary 4 (Reformulation of Proposition 3). The sender cannot induce adoption with a proba-

bility higher than 1 — G(T~1(1)).

Corollary 5 (Reformulation of Theorem 3). In a setting with a designed correlation between F'
and G, the downward-uniform signaling followed by the GEBN policy is optimal for the sender and
induces adoption with probability 1 — G(T (7)) for every T € [0,1].

Notice that the policy in Corollary 5 is independent of 7. Therefore, in more general settings
in which the threshold 7 is unknown to the sender, or alternatively, the sender faces multiple
receivers with different thresholds 7 the same policy is the one to maximize the expected number

of adopters.

Remark 2. We recall that the function o = «a(t) = F(T(t)) — G(t) played a central role in the
explicit construction of the function h(t)—the generator of the downward-uniform signals; see
Section 2.1. An economic interpretation for the function a can be deduced from Corollary 5.
Given a threshold 7 the persuasion value for the sender is 1 — G(T~!(7)). If, instead, the sender
doesn’t try to manipulate the receiver and simply sends no information the probability of adoption
would be 1 — F (7). The gain from persuasion is the difference between these two probabilities and
it equals F(1) — G(T~(1)) = F(T(t)) — G(t) = a(t) for t = T (7).

The persuasion perspective not only allows us to deduce insights about an intriguing dynamic
persuasion model but also can serve as a mathematical tool for proving these results. Below, we

sketch the ideas of Corollaries 4 and 5, which are just equivalent formulations of Proposition 3 and

Theorem 3.

16Such a requirement might arise from regulations that require the producer to provide some information about

the product before entering the market.
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Proof sketch of Proposition 3 and Corollary 4 The key idea is to bound the value of the
dynamic persuasion problem by the analogous static persuasion problem. In the static problem,
the sender reveals information in a single round; this information must be less informative than G
(because this is what she knows) but more informative than F' (because this is what the receiver
initially knows).

Notice that any persuasive dynamic policy can be translated into a static one with the same
probability of adoption: the sender commits to perform a realization of the martingale and reports
whether this realization visits the interval [r, 1]. If it does, by the martingale property, the receiver’s
posterior lies in [7, 1] and she takes the adoption action. This implies that indeed the value of the
dynamic problem is bounded by the value of the static one.

To compute the value of the static problem, we formulate the optimization problem in the
integrated CFDs space. We optimize over the set of concave functions H sandwiched in between
G < H < F (i.e., the informativeness restrictions). The left derivative at the point 7 is the
probability of non-adoption and hence we wish to minimize it. This objective is simple enough to

be solved explicitly. The minimizing concave function H = M is the one depicted in Figure 8.

Figure 8: The optimal function M\T is displayed in blue.

Proof sketch of Theorem 3 and Corollary 5 We show that the distribution of posterior
means along the GEBN process for ¢ € [0, 1] passes through all the distributions { M} -¢[o,1] where
M is the distribution whose integrated CDF is ]\/J\T in Figure 8. This proves the theorem because
Proposition 3 shows that the same distribution serves as an upper bound on 7-optimism.

To see that the downward-uniform garbling passes through all the M, distributions,'” we trace
the distribution of posteriors at every time t. We show that agent types who initially receive
a signal s < h(t) have the same posterior mean as the agent who received the signal s = h(t).
Additionally, the posterior mean of agent types who initially receive a signal s > h(t) remains
unchanged. See Figure 9. These two properties pin down the distribution to be exactly of the form

M.

171n fact, the downward-uniform garbling is the unique garbling that enjoys this property.
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Figure 9: The top horizontal line is the belief’s support of an agent whose initial posterior mean
is above T'. The bottom horizontal line is the belief’s support of an agent whose initial posterior

mean is below T, and hence at time ¢ it is exactly T
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A Proof of Theorem 2

The proof has two parts. First, we verify that the function h given in (1) and functions T" and «
are well-defined and satisfies the properties needed to define a downward-uniform signal, e.g., h
is positive and monotone. Then, we effectively reverse the steps of the heuristic derivation from
Section 2.3, starting with the formula and confirming that the corresponding downward-uniform
induces the desired distribution of beliefs.

Recall the setting. A state @ is distributed on an open interval © = (§,0) C R with 0,0 €
RU{—00, 400} according to a non-atomic distribution G. We do not assume that G has a density
or that, if it has a density, that this density satisfies any regularity assumptions. Without loss
of generality, # and 6 are the leftmost and the rightmost points of the support of G, respectively.
Let F' be another distribution on © that has a finite first moment and strictly majorizes G, i.e.,
F(z) < G(x) for all z € © and F(f) — G(0) = 0, where F and G denote the integrated CDFs.'8
No additional assumptions are imposed on F', in particular, it is allowed to have atoms.

Given G and F', we consider a downward-uniform signal s with a function h given by

h(t) = a(t) - exp (/t: ﬁ dG(x)) ) (6)

where tq is some fixed point in O,

and T = T(¢) is the solution to
G(t) + (T - t)G(t) = F(T) (7)

with the property T € (t,6).
Our goal is to show that the distribution of posterior means E[f|s] induced by the signal s
equals F'. The first step is showing that the signal s is well-defined, which boils down to checking

that the function h is well-defined and non-decreasing.

Checking that T is well-defined, continuous, and monotone We begin with verifying that,
for any ¢ € ©, a solution 7' to equation (7) with the property T € (t,0) exists and is unique. Fix
t € © and consider a function ¢,(T) = F(T) — G(t) — (T — t)G(t). Hence, (T = 0 is equivalent
to (7). Since, ¢y is continuous, we invoke the intermediate value theorem to deduce the existence
of a zero. For T = t, we have ;(t) < 0 by the assumption of strict majorization. On the other

hand, ¢¢(T) > 0 for T in the vicinity of . To see that, we rewrite ¢; as follows:

~ ~

eu(T) = (F(T) = G(T)) + (G(T) = (GW) — (T = DG()).

18Here and below, the values of an expression at , 6 in the case of § = —oco or § = +oco are to be understood as

the corresponding limits.
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The first term converges to zero as T — 6, by the definition of majorization. For the second term,
note that G is convex, so its graph lies above the tangent line at ¢, i.c., @(T) > é(t) + (T —-1)G(1)
for all T. Moreover, the difference between the left-hand side and the right-hand side is non-
decreasing in T for T' > t. Hence, the second term is nonnegative and non-decreasing in 7T'. If it
were identically zero for all T' > ¢, then G would coincide with its tangent line and thus be linear
on [t,#), implying that G places no mass on this interval. This contradicts the assumption that
0 is the upper endpoint of the support of G. We conclude that ¢;(7) > 0 for T in the vicinity
of 0. Since ; is continuous, ¢;(t) < 0, and ¢;(T) is positive for 7" in the vicinity of #, there exists
T € (t,0) such that ¢(T) = 0. Such T is unique since ¢ is a convex function taking both positive
and negative values. Thus, a function ¢ — T'(¢) is well-defined.

We now check that T'(¢) is continuous and non-decreasing. Consider ¢, € © such that t < ¢'.
Denote T' = T'(¢t) and 77 = T'(¥') and show T < T". By definition, ¢;(7) = 0 and ¢y (77) = 0. By
the convexity of G, we get G(t') > G(t) + (' — t)G(t). Plugging this into the equation satisfied
by T”, we obtain ¢:(T") > 0. Since ¢; is convex and T is its only zero, we conclude that 7/ > T
and thus T is a non-decreasing function of ! t. We verify continuity of T'(t) for all t € ©. By
monotonicity, T" admits left and right limits at ¢ which we denote by T_ and T, respectively.
Approaching t from the left and from the right in (7) and taking into account the continuity of
ﬁ, G and G, we obtain that both 7 and T must be solutions at the point ¢. Since the solution

is unique, T_ = T, = T, and thus T is a continuous function of 2° ¢,

Checking that h is well-defined, positive, and monotone Consider the function «(t) =
F(T(t)) — G(t) from the definition (6) of the function h. First, we show positivity of o which yields
positivity of h and ensures the convergence of the integral in (6).

By the convexity of F, we have F(t) > F(T) + (t — T)F(T). Expressing F(T) from this
t

inequality and plugging it into (7), we obtain F(T) — G(t) > % Equivalently,
G(t) — F(1)
t) > ———= > 0. 8
o) 2 =3 ®)

By strict majorization, the right-hand side is positive. Since @,ﬁ , and T are continuous, we
conclude that « is bounded from below by a strictly positive function that is continuous on O.
Consequently, 1/« is also non-negative and bounded from above by a continuous function ensuring

the convergence of f; ﬁ dG(z) for t € ©. Thus h is well-defined. Since « is positive, so is h.

19 In fact, the inequality T(t') > T(t) is strict if and only if the interval (,t') carries positive G mass, i.e.,
G(t') > G(t). Indeed, for continuous G, this is exactly the case when G(t') > G(t) + (¢ — t)G(t) holds as a strict

inequality.
201f G admits a continuous density g, then ¢¢(T) = 0 satisfies the conditions of the implicit function theorem and

thus T in not only continuous but also continuously differentiable with

T(t) —t)g(t
S GURDYION
F(T(t)) — G(¢)
In particular, we see that the derivative is strictly positive unless g(t) = 0 in agreement with Footnote 19. Note

that the denominator is never zero: it equals a(t) and we verify that a > 0 below.
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We now verify that h is non-decreasing. Recall that a function is of bounded variation if it
can be expressed as the difference of two non-decreasing functions. For instance, « is of bounded
variation. Any such function § admits a generalized derivative—the Stieltjes derivative df—a
signed measure whose cumulative distribution function (CDF) is 8. Classical derivatives are a
special case: differentiable 8 yields d8 = f’(z) dx, while jumps in 8 correspond to atoms of df.
Crucially, Stieltjes derivatives obey the classical rules of calculus.?!

Define «(t) = f:o ﬁ dG(z). Then 7 is of bounded variation as an indefinite Stieltjes integral,
and so is h = « - exp(7y), since bounded variation is preserved under multiplication and smooth
composition. Because G is non-atomic, v is continuous, and thus exp(y) shares no discontinuities

with . We can therefore apply the product rule and obtain
dh = exp(7y) da + adexp(7)
= exp(y) da + aexp(y) dvy
= exp(y) da + aexp(y) - é dG
— exp(7)(da + dG)
= exp(y) dF(T),

where we used da + dG = dF(T) by definition. Since F and T are non-decreasing, dF'(T) is a

non-negative measure. Hence dh is non-negative, and its CDF h is non-decreasing as claimed.
Expressing o through h We now derive an expression for « in terms of h. Rewriting (6), we

The right-hand side is of bounded variation, as is its logarithm, so both £ and In 7 inherit this

obtain

property. Taking logarithms and computing the Stieltjes derivative yields

d (m %) - —é dG.

By the chain rule for Stieltjes derivatives,

1(F) = 27(7)

and hence, multiplying both sides by ,

o 1
TOREY:
We integrate from ¢y and get
a(t)  alt) |
— — =— | —dG(z).
wo)  wlo) )

211f o and B are functions of bounded variation with no common discontinuities, then the product « - 3 is also of
bounded variation, and d(a- 8) = Bda+ adpB. If v is of bounded variation and f is continuously differentiable, then
B = f(v) is of bounded variation and d(f(v)) = f’(v) dv. Finally, an indefinite Stieltjes integral v(t) = fttﬂ q(z) d\(z),

for measurable ¢ such that the integral converges absolutely, defines a function of bounded variation with dy = g dA.
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Using the identity h(tg) = a(to), we simplify

Mﬂzh@(l—l:R;dGuv. )

This representation admits an alternative form

9

a(t) = h(t) /t %x) dG(x), (10)
since that a(t) — 0 as t — 6. Indeed, 6 is the highest point of the support of G. Since G is
continuous, we have G(t) — 1 as t — 0. Moreover, because F' majorizes G, the distribution F'
cannot have an atom at 6, and thus F(T'(t)) — 1 as T(t) is squeezed between ¢ and f. Consequently,
a(t) = F(T(t)) — G(t) — 0. Given that h is strictly positive and increasing, this asymptotic
behavior is only compatible with (9) if

!
—dG(z) =1,
[, 7 6
which?? leads to (10).

Computing the induced distribution of posterior means We now show that the downward-
uniform signal defined by the function h induces the distribution of posterior means F'. The argu-
ment proceeds in two steps. First, we establish that the posterior mean corresponding to a signal
realization s is equal to T'(h~!(s)). Second, we use this identity to prove that the unconditional
distribution of posterior means is indeed F'.

To compute the posterior mean induced by a realization s, observe that the conditional density
of the signal given the state 0 is ﬁﬂ{sgh(g)}, and 0 is distributed according to G. Therefore,
the joint distribution of (6, s) has is distributed according to ﬁ]l{h(g)zs} dG(0) ds. The posterior

distribution of € given s is thus proportional to ﬁﬂ{h(g)ZS} dG(0), so the posterior mean is

| = Jio: moy>sy ey 9G(0)
Jio: nioy=y 7tey 4G (9)

We now establish the identity relating the posterior mean and the function T'

Elf]s

(11)

Blo]s] = T(h™'(s)), (12)

where h~!(s) is the generalized inverse defined as min{f: h(f) > s}. The minimum is attained by

the right-continuity of h. Comparing (11) and (12), we see that it is enough to prove the identity
0 g

B I iy 4G(0)

=

I} 7y AG(0)

which expresses T, defined in (7), in terms of G and h. To derive this, we differentiate both sides

T(t) ; (13)

of (7). Since T is continuous and non-decreasing, both sides admit Stieltjes derivatives

G(t)dt + (T(t) — t) dG(t) + G(T) dT(t) — G(t) dt = F(T) dT(t).

22This identity may be of independent interest, as it constrains the growth of h.
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Canceling G(t) dt and using a(t) = F(T(t)) — G(t), we get
a(t)dT(t) — T(t) dG(t) = —tdG(1).

Expressing « using (5) and dividing both sides by h(t) gives

( [ de)) aT() 4 T() (515 46(0)) =~ 0 460

The left-hand side is the Stieltjes derivative of the product

0
d <T(t) - /t ﬁ dG(G)) - —ﬁ dG(1).

Integrating both sides and rearranging terms yields

7
() = I %dG(ﬁ)JrC

J iy dG(09)

where C' is a constant independent of t. Letting ¢ — 0, we conclude that C' = 0 thus confirming
identity (12).
This identity lets us express the distribution of posterior means through the distribution of

signals. Let K(s) be the CDF of signals

/Ps<s|0dG /mm D aco).

Setting s = h(t) and using the fact that h is non-decreasing, we obtain

|
QU
)
—~
>
~—

dG(9)

K(h(t :/ dG9+ht/ 7:Gt+ht/7.

(h(t)) o) (0) + h(t) wosry B(0) () + h(t) )

From identity (10), the second term equals «(t). By the definition «(t) = F(T'(t)) — G(t), we
conclude

K(h(t)) = F(T(1)). (14)

Finally, let M (s) = E[f|s] be the posterior mean induced by signal s, and Fj; its CDF. We now
show that Fjpy = F. It is enough to demonstrate that Fys(T'(t)) = F(T'(t)) for all ¢ € ©, which
implies F; = F since T maps © onto itself.

Using (11), (14), and the monotonicity of T, we obtain

We conclude that the distribution of posterior means induced by the downward-uniform signal s

with bounding function h given by (6) is equal to the target distribution F', completing the proof.

27



B Omitted Proofs from Section 3

Proof of Proposition 1. We establish the proof by identifying a one-dimensional sufficient statistic
for the collection of signals and showing it is distributionally equivalent to the sufficient statistic
of the asserted single signal.

For a non-decreasing right-continuous function h : © — R, we define its generalized inverse
h=! : R, — © as the quantile function h=!(y) = min{@ € [0,0]: k() > y}. This construction
ensures that the inverse is well-defined and non-decreasing. Crucially, for any signal realization y,
the two events {y < h(0)} and h=!(y) < 6 coincide.

We now consider a collection of conditionally independent downward-uniform signals s =
(s1,...,5,) with bounding functions hy,...,hiy. Without loss of generality, we can assume that
these functions are right-continuous. Indeed, replacing a non-decreasing function i with its right-
continuous version h4 (t) = lim,_,o+ h(t) requires changing it at at most countable number of
points. Since the distribution of the state is non-atomic, such a change corresponds to a zero
measure of states and thus results in an equivalent signal.

The likelihood of observing s given 6 is:

610 =T1 (@) He<h )

i=1

Rewriting each indicator using the generalized inverse and denoting h(#) = [, h:(6), we obtain

1
H {h )<0} — h(€>]l{maxi h;l(si)ga}'

The likelihood depends on the signal vector s only through the statistic m(s) = max; h;l(si),
which is therefore sufficient for 6.

Next, we show that the state-conditional distribution of m(s) is identical to that of a sufficient
statistic from a single downward-uniform signal with bounding function h(f) = [], h:(0). We

compute the CDF of m(s) conditional on §. For any t € ©:
Fogoyo(t) = P(m(s) < ]6) = P (max b (s5) < t[6)

k
H hil(ss) < t]6),

where the last identity holds by conditional independence. The event h;l(si) < t is identical to
s; < hi(t). Since s; is uniformly distributed on [0, h;(6)] conditional on 6, the probability of this

event is h,(((?) Thus, the CDF of the sufficient statistic is:

= ohit)  h(t)

m s)|9 il hz 0 (0

~

Now, consider a single downward-uniform signal s’ with bounding function h(f). Its sufficient

statistic is m/(s") = h=1(s), where h~! is the generalized inverse of h. The conditional CDF of this
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statistic is:

Eﬂﬂﬂﬂ=Pw*@ﬁ<t®=Pw<h@w%=%g'

Since the sufficient statistics m(s) and m/(s’) have identical conditional distributions for any 6,
the two information structures induce the same distribution of posterior beliefs and are therefore

equivalent. O

Proof of Proposition 2. Dubins and Gilat (1978) formulate and prove a particular case of Propo-
sition 2 for a Dirac measure F' = §,. We now show how to derive the general case from their
result.

Let X be the GEBN learning process and let M = Plmax,cp,1] X¢ > 7|Xo = ] for every x
and 7. Let Y = (Y;)¢c[0,1) be any other learning process with law @ such that Yy ~ F and Y1 ~ G
and the conditional distributions Q(Y; € B|Yy = ) = P(X; € B|Xy = x) for any Borel subset
B C R and almost every x with respect to F. By Dubins and Gilat (1978),

Q[max Y; > 7|Yo =] < M
te(0,1]

for every = and for every 7. Therefore, for every 7,

Opt.(V) = [ Qlmax Yi = rlYo = aldF (o) < [ MIdF(z) = Opt, (X)

as desired. O

Proof of Proposition 3. We denote by D, the dynamic persuasion problem in which the sender
reveals information to a receiver who immediately adopts once her posterior exceeds 7. The
martingale, which captures receiver’s posterior over time is restricted to have initial distribution F’
and terminal distribution G. We denote by S, the static persuasion problem in which the sender
reveals information to a receiver and is restricted to reveal information that is less informative
than G but more informative than F'; Namely she can reveal any H such that F <,, H <,, G.
Proposition 3 essentially states that val(D,) =1 — G(T~1(7)).

Notice that val(D,) < val(S;) because a possible signaling policy in the static interaction is the
one in which the sender draws a realization of the martingale and reports whether at some time t it
exceeded 7. Such a policy is persuasive because the martingale condition ensures that once 7 has
been reached, the expectation at time ¢ = 1 will be 7. Namely, every policy in the dynamic setting
has a corresponding signaling policy in the static setting with the same value for the sender.

For a CDF H we denote H_ () = lim_,0 >0 H(xz —¢) the CDF that excludes the atom on x (if
such exists). From the left-differentiable function H(z) = N

o H(y)dy we denote its left derivative
by

~

H(x) - H(z - ¢

H' () =lime — 0,e > 0

mm>

and we notice that H’ (z) = H_(z). We denote by H the set of all convex functions ﬁl(az) with
left derivative bounded by 0 < H' () < 1 that are sandwiched in between F(z) < H(z) < G(z)
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for all x € [0,1]. Now val(S;) can be elegantly written in the domain of the integrated CDFs.

o B _ =7 1 _ cTy!
Val(ST)fH:FSI{ln%SmG(l H_(1)) glea;(l H (1))=1 I%nelgH_('r) (15)

The J\/J\T € H that minimizes the left derivative at the point 7 is the one depicted in Figure
8. Namely, we draw a tangent to the function G from the point (7, F (7)) and denote the tangent
point by ¢*. Now M\T equals G in the interval [0,t*], it equals the tangent in the interval [t*, 7],
and it equals F in the interval [r, 1].

The argument for J\//.TT being the minimizer of the left derivative follows from two arguments.

~

First, for every y € [F(r), G(r)] the solution for the minimization problem

is obtained by drawing a tangent of the function G from the point (7,y) with the tangent point ¢
and letting H being equal to the tangent in the interval [¢,7]. Indeed any function H < G with
a lower left derivative will violate convexity. Second, the slope of the tangent to G from (1,9)
(i.e., the left derivative at 7) is monotonically increasing in y. Therefore, the minimizing choice is
y= ﬁ(T) which exactly yields the minimizer ]\//TT.

Notice that the minimal value for the minimizer M, is ]/\/[\;7(7') =G'(t*) = G(t*) = G(TY(1))

and hence we conclude by Equation (15) that
val(D,) < val(S;) =1— M’ (1) =1 - G(T"'(7)).

To see that 1 — G(T~1(r)) is achievable, we observe that F < M, < G. So, by Blackwell’s

theorem, there exists a two-step martingale (say times ¢t = 0, %, 1) that consists of spreading F' to
M, at time t = % and spreading M, to G at time t = 1. The maximal optimism will be achieved

at timet:%. O

Proof of Theorem 3. Denote by Y € A([0,1]) the belief of a receiver who gets the signal s = 0
about the state 6 € [0, 1] in the downward-uniform garbling. For a threshold 7, let ¢ € [0, 1] be the
unique value for which E[Y]Y > t] = 7 = T. We argue that at time ¢ of the GRBN process the
distribution of posteriors means of the receiver is precisely M, from the proof of Lemma 3. This
will conclude the proof.

If the state has not been revealed yet and the receiver’s signal is s < h(t) then her posterior
mean is E[Y|Y > t| = T. Saying it differently, if the state has not been revealed yet and the
receiver’s posterior mean at time ¢t = 0 was (weakly) below T, then her current posterior mean is
T. See Figure 9.

If the state has not been revealed yet and the receiver’s signal is s > h(t) then her posterior
remains unchanged because she initially knew that 8 > ¢ with probability 1. Saying it differently,
if the state has not been revealed yet and the receiver’s posterior mean at time ¢t = 0 exceeded T,

it remains unchanged. See Figure 9.
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Finally, if the state has been revealed the receiver adopts this state as her posterior mean.
Therefore at every point of time ¢ the CDF of the distribution of posterior means denoted by
H; has the following properties:

o H:(x) = G(x) for every z € [0, t]; this corresponds to the event of revealing the state.

e Hi(x) = F(x) for every x € [T,1]; this corresponds to the population of receivers whose

signal is s > h(t) in the event of not revealing the state.

e All the remaining mass of H; is concentrated on an atom on T’; this corresponds to the

population of receivers whose signal is s < h(t) in the event of not revealing the state.

Expressing these three properties in the integrated CDF space implies ﬁt(x) = é(m) for every
x € [0,t], H,(z) = F(z) for every z € [T,1], and H,(z) is linear in (¢, T). Notice that these
three properties pin down uniquely the function H; and this function is exactly M, for T' = 7; see

Figure 8. O

31



	Introduction
	Explicit Blackwell's Theorem
	The Main Theorem
	Beliefs Induced by Downward-Uniform Signals
	Intuition Behind the Main Theorem

	Properties of Downward-Uniform Signals, Examples, and Applications
	The German tank problem and independent downward-uniform signals
	Optimism in learning

	Proof of Theorem 2
	Omitted Proofs from Section 3

