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Abstract

Blackwell’s theorem, connecting majorization to the existence of signals inducing a desired

distribution of posterior means, has numerous applications in economics. We give a new proof

of this theorem via an explicit construction. Our approach provides a concrete way to generate

signals: we demonstrate that any distribution inducible by some signal can also be induced by

a “downward-uniform signal,” which simply imposes a stochastic lower bound on the realized

state. We further study properties of these signals, indicating their suitability in static and

dynamic economic environments.

1 Introduction

Blackwell’s celebrated theorem Blackwell (1951) is a cornerstone of information economics, pro-

viding a fundamental link between the informativeness of signals and the distributions of posterior

beliefs they can induce. Specifically, the theorem establishes a necessary and sufficient condition

for the existence of a signal that generates a desired distribution of posterior means: a distribu-

tion F of posterior means can be induced from a prior distribution G of a state variable if and

only if F majorizes G. While Blackwell’s theorem characterizes which belief distributions are fea-

sible, it offers no guidance on how to construct signals that achieve them. The original proof is

non-constructive, providing an existence result without a concrete method for signal design.

This paper addresses this gap by providing a novel, simple, and economically meaningful con-

struction of signals that achieve any feasible belief distribution in the context of Blackwell’s the-

orem. We consider a setting where a state, θ, is distributed on an interval Θ according to a

distribution G, and an agent seeks to induce a posterior belief distribution F that majorizes G and

shares the same mean. Rather than relying on abstract existence arguments, we demonstrate that

any such F can be induced by a downward-uniform signal.
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A downward-uniform signal is constructed based on a monotone function h : Θ → R+. Given

a realized state θ, the agent observes a signal s drawn uniformly from the interval [0, h(θ)]. This

implies that the observed signal s provides a lower bound on the true state θ. Importantly, signals of

this form are frequently encountered in empirical work where data is only observed for individuals

whose underlying type exceeds a variable threshold. For instance, in studies of consumer behavior,

a purchase is only observed if a buyer’s private value exceeds a random price. This creates a

natural censoring mechanism analogous to a downward-uniform signal.

Our result shows that this simple and common signal structure is fully general: for any dis-

tribution F and any non-atomic distribution G satisfying the conditions of Blackwell’s theorem,

there exists a function h such that the resulting downward-uniform signal induces precisely the

desired distribution F . Furthermore, we provide an explicit formula for this function h, which is

defined through a geometrically intuitive quantity α representing the difference in mass between

F and G at pairs of threshold.

This explicit construction offers several advantages beyond demystifying the process of signal

design by replacing the abstract existence result of Blackwell’s theorem with a concrete recipe. We

observe that the family of downward-uniform signals possesses a structural property that makes

it particularly convenient for modeling information aggregation across sources and information

accumulation over time. Specifically, observing a sequence of conditionally independent downward-

uniform signals is equivalent to observing a single downward-uniform signal whose function h equals

the product of the individual functions hi.

This mirrors a well-known invariance property of Gaussian signals under aggregation. However,

downward-uniform signals offer greater flexibility: their invariance holds for arbitrary distributions

F and G, whereas the Gaussian case requires both to be Gaussian. As a result, in Blackwell’s

theorem, it is without loss of generality to assume that F is generated by a sequence of i.i.d.

signals. That is, for continuous state spaces, signals are effectively infinitely divisible. This is

in sharp contrast with the finite-state setting. For instance, in binary-state persuasion, binary

signals are known to be optimal, but such signals are generally not equivalent to a combination of

informative, conditionally independent signals.

We also examine downward-uniform signals in specific economic environments, highlighting

their connection to classical econometric questions and to models of information provision in both

static and dynamic settings.

The paper is structured as follows. Section 2, which follows the discussion of related litera-

ture, presents our main result: a constructive version of Blackwell’s theorem, together with the

underlying intuition. Section 3 examines key properties of downward-uniform signals and their

applications to specific economic environments. The main proofs are outlined in the body of the

paper, while the full formal arguments and technical details are provided in the appendices.
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Related Literature Blackwell’s seminal work Blackwell (1951, 1953) focused on the comparison

of signals by informativeness, characterizing belief distributions that can be induced by garbling

a given signal. This result has become one of the central tools in information economics, offering

a tractable way to parameterize belief distributions that an informed sender can induce; see, e.g.,

Gentzkow and Kamenica (2016); Kolotilin (2018); Dworczak and Martini (2019); Ivanov (2021);

Candogan and Strack (2023); Bergemann, Heumann, and Morris (2022). While specific classes

of belief distributions are known to be inducible by simple signal structures—e.g., bi-pooling sig-

nals suffice for optimization of a convex objective Kleiner, Moldovanu, and Strack (2021); Arieli,

Babichenko, Smorodinsky, and Yamashita (2023)—the question of how general belief distributions

can be induced remained unaddressed in the economic literature prior to our work.1

While the distribution of posterior means plays a central role in many economic settings, a recent

paper by Yang and Zentefis (2024) has shown that in some environments, the relevant object is the

distribution of posterior medians or—more generally, posterior quantiles—and characterized such

feasible distributions F for a given prior G. As with the Blackwell theorem, their characterization

is non-constructive and does not yield a simple recipe for constructing a signal that induces the

target distribution. This issue has been recently addressed by Kolotilin and Wolitzky (2024). While

conceptually closest to our work, their setting and methods differ substantially since posterior

quantiles behave quite differently from means. In particular, the key idea in their construction is

to design a signal that generates maximal ambiguity in the quantile, so that different tie-breaking

rules yield all feasible distributions. In contrast, posterior means are uniquely defined, and one

must construct a separate signal tailored to each target distribution F .

Our results also connect to the growing literature on reduced-form approaches to Bayesian

mechanism design Kleiner, Moldovanu, and Strack (2021); Ashlagi, Monachou, and Nikzad (2021);

Nikzad (2022). This literature simplifies multi-agent design problems by reformulating them in

terms of one-agent marginals of a mechanism—the so-called reduced mechanisms, representing the

expected outcome for an agent conditional on her type. Blackwell’s theorem characterizes feasible

reduced mechanisms when interpreting the agent’s type as a signal and the outcome as a state.

Hart and Reny (2015) pioneered this connection, studying feasible reduced forms in single-good

allocation. Our construction can be seen as a tool for designing mechanisms that achieve desired

reduced forms.

In the mathematical literature, Strassen’s theorem (Strassen (1965), Theorem 8) generalizes

Blackwell’s theorem to multiple dimensions and signal sequences. This theorem states, without

1Kleiner, Moldovanu, and Strack (2021); Arieli, Babichenko, Smorodinsky, and Yamashita (2023) characterized

the extreme points of the set of distributions that majorize a given one, showing that each such extreme distribution

can be induced via bi-pooling signals. By the Choquet theorem (Phelps, 2001), any majorizing distribution can

be expressed as a weighted average of these extremes, and thus is in principle inducible via a randomization over

bi-pooling signals. However, this yields no tractable description of the signal, as the Choquet theory is inherently

existential. Finding an explicit decomposition of a majorizing distribution into extreme ones remains an open

problem.
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economic context, that a distribution F majorizes G if and only if there exists a martingale (X,Y )

where X ∼ F and Y ∼ G.2 Our paper provides an explicit construction of such a joint distribution

(X,Y ) for given F and G. In general, such a joint distribution is not unique, and several alternative

constructions have been proposed in the literature on martingale optimal transport. Notable

examples include the left-curtain coupling (Beiglböck and Juillet, 2016; Hobson and Norgilas,

2022) and related constructions based on Skorokhod embeddings into Brownian motion (Hobson,

2011; Beiglböck, Henry-Labordère, and Touzi, 2017).

Our construction differs in several important aspects. It is arguably simpler, possesses a clear

economic interpretation, and, crucially for information and mechanism design, focuses on gener-

ating X given Y (e.g., sampling a signal given the state). Existing mathematical constructions

are convenient for sampling Y given X, but the conditional distribution of X given Y lacks a

known closed-form expression. Our approach yields equally simple forms for both conditional

distributions, X|Y and Y |X, though we focus on the former for economic relevance.

Finally, our analysis of optimism in learning connects to a rich literature on dynamic information

acquisition and belief updating. Dubins and Gilat (1978) and Hobson (1998) studied maximal

martingales, while Koh, Sanguanmoo, and Zhong (2024) analyzed persuasion in optimal stopping

problems. Khantadze, Kremer, and Skrzypacz (2025) studied the case of multiple actions. Building

on the “conclusive bad news” martingales of Dubins and Gilat (1978), we contribute a novel

characterization of the most optimistic martingale under informational constraints.

2 Explicit Blackwell’s Theorem

This section presents our main result: a constructive version of Blackwell’s theorem using downward-

uniform signals. We show that any feasible posterior distribution can be induced by a signal that

is uniformly distributed in an interval whose upper bound depends on the realized state. Before

describing the construction, we briefly discuss the key concepts of majorization, garbling, and

Blackwell’s theorem.

Let Θ = (θ, θ) ⊂ R be a possibly unbounded interval, allowing for θ = −∞ or θ = +∞.

We consider a state θ drawn from this interval according to a cumulative distribution function

(CDF) G. Throughout the paper, we identify distributions with their CDFs. We refer to G as the

prior distribution and primarily focus on non-atomic priors. The integrated CDF is denoted by Ĝ

Ĝ(x) =

∫ x

θ

G(y)dy.

Definition 1. For CDFs on Θ with finite expectation, we say that F majorizes G if

F̂ (x) ≤ Ĝ(x) for all x ∈ Θ and F̂ (θ) = Ĝ(θ).

2Recall that (X,Y ) is a martingale if E[Y |X] = X. Interpreting Y as a state and X as a signal, by the martingale

property, the posterior mean E[Y |X] equals the signal itself and thus is distributed according to F .
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The majorization is strict if the inequality is strict for all x ∈ Θ.

Majorization formalizes the idea that the distribution F is less dispersed than G. The concept

was first introduced by Hardy, Littlewood, and Polya (1929) for vectors in Euclidean space, and

our definition follows the formulation in Kleiner, Moldovanu, and Strack (2021).3

A signal provides information about θ ∼ G, and we are interested in the resulting posterior

mean after observing the signal. Formally, let S be a measurable set of signals. A signal about θ (or

garbling) is a mapping π : Θ → ∆(S) that provides noisy information in the form of s ∼ π(θ) which

yields a posterior mean E[θ|s]. The induced distribution of the posterior means is the distribution

of E[θ|s] where s is drawn in two steps: first sample θ ∼ G and then draw s ∼ S(θ).

If a distribution of posterior means F is induced by some signal s, then a simple application

of Jensen’s inequality implies that F majorizes G. Blackwell’s theorem establishes the other

direction.4

Theorem 1 (Blackwell (1951)). If a distribution F majorizes a prior distribution G, then there

is a signal that induces the distribution of posterior means F .

To illustrate the applicability as well as the limitations of Blackwell’s theorem consider the

following example.

Example 1. Let F = Beta(1, 1) and G = Uniform([0, 1]). Blackwell’s theorem makes it elementary

to check that F is inducible from G by verifying the majorization condition:

F̂ (x) = x3 − x4

4
≤ x2

2
= Ĝ(x) for every x ∈ [0, 1].

However, the question of which garbling of G induces the Beta(1, 1) distribution remains unclear

from the theorem and its original non-constructive proof.

As in the example above, we are interested in how, given a prior G and a desired posterior F

majorizing G, we can construct a signal that induces this posterior. To formulate the answer, we

introduce the concept of a downward-uniform signal.

Definition 2. A downward-uniform signal is defined by a non-decreasing function h : Θ → R+.

Given state θ, the signal s is drawn uniformly from the interval [0, h(θ)].

Intuitively, the signal s provides a noisy lower bound on the true state θ. The higher the state,

the higher the potential range of signals. Figure 1 illustrates this concept.

3In the economics literature, majorization appears under various names, including second-order stochastic domi-

nance (for distributions with the same mean), mean-preserving contraction, reverse convex order, the Lorenz (1905)

order, or having less risk in the sense of Rothschild and Stiglitz (1970).
4Blackwell (1951)’s original formulation is a particular case, where the state θ ∼ G itself is the posterior beliefs

about some binary ω ∈ {0, 1} induced by a signal s1 and the question is what belief distributions F can be induced

by garbling s1. Our formulation is a particular case of (Strassen, 1965, Theorem 8)—a standard reference in math

literature—applicable to the multidimensional case and sequential garbling. A related result was obtained by Hardy,

Littlewood, and Polya (1929).
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θ

h

θ

s ∼ Uniform

h−1(s)

Figure 1: A downward-uniform signal. The myblue curve represents the function h(θ). For a given

state θ, the signal s is drawn uniformly from the interval [0, h(θ)].

2.1 The Main Theorem

We are now ready to state our main result, the constructive counterpart to Blackwell’s theorem.

Theorem 2 (Constructive Blackwell Theorem). If a distribution F strictly majorizes a non-atomic

prior distribution G, then there exists a downward-uniform signal that induces the distribution of

posterior means F .

This theorem refines Blackwell’s theorem by guaranteeing that the desired posterior distribu-

tion, F , can be garbled from the prior G via a signal that has a specific form—a downward-uniform

signal. We stress that while the distribution G is assumed to have no atoms, no continuity as-

sumptions are imposed on F since atomic posterior distributions often originate endogenously as

a result of information design. The assumption of strict majorization assumption can be relaxed;

see Remark 1 below.

This downward-uniform signal from Theorem 2 can be expressed through the primitives F

and G, justifying the constructive nature of the result. The function h : Θ → R>0, which defines

the downward-uniform signal, is pinned down up to a multiplicative factor and is given by

h(t) = α(t) · exp
(∫ t

t0

1

α(x)
dG(x)

)
, (1)

where t0 ∈ R is an arbitrary interior point of Θ and α(t) is defined geometrically as follows (Fig-

ure 2).5 We trace a tangent line to the graph of the integrated CDF Ĝ(x) at a point x = t and find

a point x = T to the right of t, where this line intersects the graph of the integrated CDF F̂ (x).

The quantity α(t) is then defined as the difference between the slopes of the integrated CDF of F

at T and the integrated CDF of G at t. Formally, α : Θ → (0, 1) is given by

α(t) = F (T )−G(t), where T ∈ (t, θ) solves Ĝ(t) + (T − t)G(t) = F̂ (T ). (2)

Although atoms of F lead to jumps in α and h, both functions remain right-continuous.

Example 2. Let F = Beta(1, 1) and G = Uniform([0, 1]) as in Example 1. Theorem 2 suggests

the following garbling for this pair of distributions. For every θ ∼ Uniform([0, 1]) draw a signal

5For every interior point t ∈ Θ, due to a strict majorization, the function α(x) is bounded away from 0 in the

interval [t0, t] (or in the interval [t, t0], depending on their order). Therefore, for every interior point t the integral

in Equation (1) is well defined.
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x
t T

F̂ (x)

Ĝ(x)

Figure 2: α(t) is the difference between the slope of F̂ (lower curve) at T and the slope of Ĝ (upper

curve) at t.

θ
0 1

State Space Θ

E[θ|s]
1/3 2/3

Posterior Mean Space

Figure 3: Downward-uniform garbling inducing F = Uniform({ 1
3 ,

2
3}) from G = Uniform([0, 1]).

s ∼ Uniform([0, h(θ)]) = Uniform([0, θ3/2]). A simple calculation using the Bayes formula verifies

that s results in the posterior mean distributed according to Beta(1, 1).

The identity h(θ) = θ3/2 is obtained as follows. First we compute T (t) =
√
t (see Figure 2 for

the functions F̂ (x) = x3 − x4

2 and Ĝ(x) = x2

2 ), and hence α(t) = F (T ) − G(t) = 2t(1 −
√
t). By

formula (1), we get

h(t) = 2t(1−
√
t) exp

(∫ t

t0

1

2x(1−
√
x)

dx

)
= 2t(1−

√
t) exp

(
log(

√
t)− log(1−

√
t) + c

)
= 2ect3/2

The constant factor 2ec plays no role and can be replaced with 1.

The next example provides intuition on how the behavior of h translates into the behavior of F .

A sharp increase of h creates an interval in F carrying little mass, while regions where h does not

change much lead to condensation of mass. These phenomena are particularly stark in the case of

piecewise-constant h that lead to atomic F .

Example 3. Consider atomic F = Uniform({ 1
3 ,

2
3}) and G = Uniform([0, 1]). It is easy to verify

that F majorizes G. One can either use formula (1) or infer directly that the step function h equal

to 1
4 for x ≤ 1

3 and 1 for x > 1
3 has the desired properties. The resulting garbling is depicted in

Figure 3.

Remark 1 (Non-strict Majorization). The case of non-strict majorization can be reduced to sepa-
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rate strict majorization instances. Consider F majorizing G. The integrated CDFs are continuous,

and thus {x : Ĝ(x) > F̂ (x)} is an open set, which can be represented as the union of countably

many open intervals {In}n∈N . Let sn be a downward-uniform signal for the pair of distributions

obtained by conditioning F and G to the interval In. To garble G into F , one can send the pair of

signals (n, sn) where n ∈ N reveals which interval the state belongs. Outside of ∪nIn, realizations

of θ are completely disclosed.

The economic interpretation of α(t) is explored in Section 3 (see Remark 2). We now discuss

an intuition behind the theorem and the origin of the Formula (1). The first step is understanding

specific properties of belief distributions induced by downward-uniform signals.

2.2 Beliefs Induced by Downward-Uniform Signals

This section characterizes the distribution of posterior beliefs induced by downward-uniform sig-

nals. For clarity of exposition, we assume that the distribution G of the state θ has density g, that

is G is absolutely continuous. Conditionally on θ, the downward-uniform signal s is drawn from

the uniform distribution on the interval [0, h(θ)]. Thus, the density of s conditional on θ is given

by p(s|θ) = 1{s≤h(θ)}
1

h(θ) . Let g(θ|s) be the density of the conditional distribution of θ given the

signal s. Using Bayes’ formula:

g(θ|s) = p(s|θ)g(θ)∫
R p(s|θ)g(θ)dθ

=
1{s≤h(θ)}

g(θ)
h(θ)∫

θ:h(θ)≥s
g(θ)
h(θ)dθ

.

We see that for any signal realization, g(θ|s) is an upper tail of the same distribution with density

proportional to g(θ)
h(θ) . In other words, observing different signals only changes our beliefs about the

relative probabilities of states within the upper tail, not the shape of the distribution within that

tail. We call it the identical quantiles property.

The posterior mean is the average of θ with respect to g(θ|s):

E[θ|s] =
∫
R
θg(θ|s)dθ =

∫
θ:h(θ)≥s

θ g(θ)
h(θ)dθ∫

θ:h(θ)≥s
g(θ)
h(θ)dθ

. (3)

It is easy to see that the identical quantile property implies the following monotonicity property:

the posterior mean E[θ|s] is monotone in s; i.e., higher signals lead to higher posterior means.6

Corollary 1. Beliefs induced by downward-uniform signals exhibit identical quantiles and mono-

tonicity properties. In particular, these properties are consistent with inducing any distribution F

majorizing G.

We will see that these properties are important in future sections.

6A stronger monotonicity property holds: the belief after observing a signal s—i.e., the conditional distribution

of the state given this signal—first-order stochastically dominates the belief after observing a signal s′ < s. This is

immediate as these beliefs are different tails of the same distribution.
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2.3 Intuition Behind the Main Theorem

This section provides a heuristic derivation of the formula for h, the function defining the downward-

uniform signal that induces the posterior distribution F from the prior G. While Appendix A

establishes the formula’s validity for general F and G, here we focus on the intuition behind its

functional form without paying attention to technical assumptions we make along the way. For

further simplicity, we focus on the case where both G and F admit densities g and f , which are

positive on [0, 1] and zero elsewhere.

We begin by considering the cumulative distribution function of the signal s, denoted by K(s).

Recall that the conditional density is given by p(s|θ) = 1{s≤h(θ)}
1

h(θ) . Thus,

K(s) =

∫ 1

0

(∫ s

0

p(s′|θ)ds′
)
g(θ)dθ =

∫ 1

0

(∫ s

0

1{s′≤h(θ)}

h(θ)
ds′
)
g(θ)dθ.

Since only the indicator function depends on s′ in the inner integral, we can rewrite this as

K(s) =

∫ 1

0

g(θ)

h(θ)

(∫ s

0

1{s′≤h(θ)}ds
′
)
dθ

=

∫ 1

0

g(θ)

h(θ)
min{h(θ), s}dθ

=

∫
θ:h(θ)≤s

g(θ)

h(θ)
h(θ)dθ +

∫
θ:h(θ)≥s

g(θ)

h(θ)
s dθ

=

∫
θ:h(θ)≤s

g(θ)dθ + s

∫
θ:h(θ)≥s

g(θ)

h(θ)
dθ.

Now, consider a value t ∈ [0, 1] and define T = E[θ|s] for s = h(t). By the monotonicity property

of downward-uniform signals, E[θ|s] ≤ T if and only if s ≤ h(t). By the choice of T and t, the

following identity holds:

F (T ) = K(h(t)).

Substituting the formula for K(s) and simplifying h(θ) ≤ h(t) to θ ≤ t (which is valid because h

is monotone), we obtain

F (T ) = G(t) + h(t)

∫ 1

t

g(θ)

h(θ)
dθ. (4)

Since T can be viewed as a function of t, we define α(t) = F (T )−G(t). Thus,

α(t) = h(t)

∫ 1

t

g(θ)

h(θ)
dθ. (5)

We now show that h can be expressed in terms of α via formula (1). At this stage, α is not

yet expressed in terms of the primitives F and G as it depends on T . However, we will later

demonstrate that T can be expressed in terms of the primitives via the identity (2).

Taking the logarithm of both sides of (5) and then differentiating with respect to t, we get

(logα)′ = (log h)′ − g

h ·
∫ 1

t
g(θ)
h(θ)dθ

.

Expressing the integral in the denominator using (5) and rearranging, we arrive at

(log h)′ = (logα)′ +
g

α
.
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Integrating both sides yields

log h = logα+

∫
g

α
,

which is equivalent to (1).

Finally, we derive the identity (2) for T = T (t). Using the formula (3) for E[θ|s] and the

definition of T , we have

T =

∫ 1

t
θ g(θ)
h(θ)dθ∫ 1

t
g(θ)
h(θ)dθ

.

Multiplying by the denominator and differentiating both sides with respect to t gives

−T (t) · g(t)
h(t)

+ T ′(t)

∫ 1

t

g(θ)

h(θ)
dθ = −t · g(t)

h(t)
.

Multiplying both sides by h(t) and expressing the integral using (4) results in

−T (t) · g(t) + T ′(t) · (F (T (t))−G(t)) = −t · g(t).

Since T ′G(t) + Tg(t) is the derivative of TG(t) and T ′F (T ) is the derivative of F̂ (T ), we can

integrate both sides and obtain

F̂ (T )− TG(t) = C −
∫ t

0

xg(x)dx,

where C is some constant. Integrating by parts on the right-hand side and reshuffling the terms,

we get

Ĝ(t) +G(t) · (T − t) + C = F̂ (T )

Setting t = 1 we get T = 1 and find that C = 0, thus establishing (2).

3 Properties of Downward-Uniform Signals, Examples, and

Applications

For a given prior distribution G of a state θ and a target distribution F of induced beliefs,

downward-uniform signals are just one among many possible ways to contract the former to the

latter. In this section, we study the specific properties of the downward-uniform garbling that sin-

gle it out from other information structures capable of inducing the same distribution of posterior

means.

To see that many different garblings can induce the same F from a given G, consider an

example where the prior is G = Uniform([0, 1]) and the target distribution of posteriors is F =

Uniform({ 1
3 ,

2
3}). The downward-uniform signal provides one way to achieve this by contracting

a fraction of 3
4 of the mass of G in the interval [ 13 , 1] into an atom on 2

3 while the remaining

mass is contracted into an atom on 1
3 as depicted in Figure 3. There are however infinitely many

other garblings that result in the same F but differ in the distribution of posterior means induced

conditionally on realized state θ. For instance, Figure 4 illustrates a structurally different garbling

10



that contracts the mass of the interval [ 1
12 ,

7
12 ] into an atom on 1

3 and the remaining mass into an

atom on 2
3 .

θ
0 1

State Space Θ

E[θ|s]
1/3 2/3

Posterior Mean Space

Figure 4: A non-monotone garbling inducing F = Uniform({ 1
3 ,

2
3}) from G = Uniform([0, 1]) maps

intermediate states to the low posterior and extreme states to the high posterior.

A social planner whose objective depends only on the induced distribution of posterior means F ,

as in Dworczak and Martini (2019), would be indifferent between all such signals. For such a

planner, downward-uniform signals simply offer one convenient choice among many. However, in

many settings the planner’s cares about the posterior means induced for each state realization,

which makes the choice of garbling no longer a matter of convenience but decision that affects

outcomes.7

Below, we discuss various environments where downward-uniform signals arise naturally. We

use the context provided by these environments to highlight specific properties of downward-

uniform signals and joint distributions of states and beliefs they induce.

3.1 The German tank problem and independent downward-uniform sig-

nals

The German tank problem is a classic statistical problem of estimating the size of a population

from which a random sample is drawn.8 A version of this problem is tightly related to downward-

uniform signals.

Let the state θ be the total number of items produced, which we model as a continuous variable

for simplicity. An analyst holds a prior belief G about θ. The items are enumerated from 0 to θ,

so a randomly drawn item s has a serial number uniformly distributed on [0, θ]. The observation

7For instance, the joint distribution of the state and induced beliefs is critical , for instance, in persuasion

to handle state-dependent objectives (Dworczak and Kolotilin, 2024; Kolotilin, Corrao, and Wolitzky, 2025) and

welfare effects in persuasion Doval and Smolin (2024), recommendation system and public recognition schemes

design (Saeedi and Shourideh, 2020; Vaeth, 2024), and martingale optimal transport (Beiglböck and Juillet, 2016).
8The name originates from its application by Allied forces during World War II to estimate the monthly produc-

tion rate θ of German tanks from the serial numbers on captured vehicles. The same statistical technique has since

been used to estimate the scope of production in various contexts and also in numerous other applications, ranging

from software bugs to ecology; see a survey by Simon (2024).
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of a single serial number s is therefore a downward-uniform signal with the function h(θ) = θ.9

A more realistic scenario involves an analyst observing a sample of k items with serial numbers

s1, . . . , sk, drawn independently from the uniform distribution on [0, h(θ)]. This is equivalent

to observing a collection of downward-uniform signals that are i.i.d. conditional on the state.

Sequences of conditionally i.i.d. signals also arise in models of learning, where agents accumulate

information over time or from multiple sources.10

In general, combining such signals does not preserve the original signal structure. For example,

the joint observation of two conditionally i.i.d. binary signals si ∈ 0, 1, in general, cannot be

reduced to a single binary signal, as the realizations {(0, 0)}, {(1, 0), (0, 1)}, and {(1, 1)} yield

different posteriors. Partially for this reason, the literature has emphasized asymptotic learning,

where the number of signals grows large and detail-free conclusions become possible.

A notable feature of downward-uniform signals is that the family is closed under combination:

any finite collection of conditionally independent downward-uniform signals—possibly with differ-

ent distributions—is equivalent to a single downward-uniform signal. This holds even when the

individual signals differ, as long as each is downward-uniform relative to its own bounding function.

Two signals s and s′ are said to be equivalent if they induce the same joint distribution over

the state and the posterior mean.

Proposition 1. Let s1, . . . , sk be conditionally independent downward-uniform signals with cor-

responding bounding functions h1(θ), . . . , hk(θ). Then the collection (s1, . . . , sk) is equivalent to a

single downward-uniform signal with bounding function

h(θ) =

k∏
i=1

hi(θ).

This property of downward-uniform signals suggests that they form a tractable class for mod-

eling sequential learning and information aggregation from multiple sources. It is instructive to

compare them with the widely used Gaussian framework. In that setting, the prior G is Gaussian,

and each signal takes the form si = θ+ηi, where the shocks ηi are Gaussian. Aggregating such sig-

nals yields another signal of the same form. Downward-uniform signals exhibit a similar invariance

under aggregation, but offer greater flexibility: they accommodate arbitrary prior distributions G

and allow each signal to induce an arbitrary posterior mean distribution Fi.

The proposition is proved in Appendix B. To build intuition for the product formula, consider

the likelihood of observing a single downward-uniform signal s′ with bounding function h′, and

9Downward-uniform signals with general h, can capture the situation where h(θ) is the number of potentially

available produced items and θ is a parameter of affecting the scope of production. For instance, θ may represent

the number of produced items including those not yet distributed, a factor of production such as capital or labor,

or just a statistic of the total production that the analyst is interested in.
10See, for instance, Moscarini and Smith (2002); Azrieli (2014); Cripps, Ely, Mailath, and Samuelson (2008); Mu,

Pomatto, Strack, and Tamuz (2021); Frick, Iijima, and Ishii (2023, 2024).
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compare it to the likelihood of observing a collection of signals s = (s1, . . . , sk):

L(s′|θ) = 1

h′(θ)
1{s′≤h′(θ)}, L(s|θ) =

k∏
i=1

1

hi(θ)
1{si≤hi(θ)}.

The second expression simplifies by noting that the product of indicators equals a single indicator

1{m(s)≤θ}, where m(s) = maxi h
−1
i (si). Setting h(θ) =

∏k
i=1 hi(θ), the likelihood becomes

L(s|θ) = 1

h(θ)
1{m(s)≤θ}.

Comparing the two expressions suggests that, to match the posterior beliefs induced by the collec-

tion of signals s using a single signal s′, one should take h′ = h. This observation motivates the

product formula. In Appendix B, we formally establish the equivalence by showing that a suitable

monotone transformation of the sufficient statistic m(s) yields a valid downward-uniform signal,

and address technicalities arising from possible discontinuities and flat regions in the functions hi.
11

Proposition 1 implies a general structural property of garblings: their infinite divisibility under

a non-atomic prior.

Corollary 2 (IID Blackwell Theorem). If a distribution F strictly majorizes a non-atomic prior

G, then for any integer k ≥ 1, there exist signals s1, . . . , sk, i.i.d. conditional on the state, such

that F is induced by the joint observation of s1, . . . , sk.

Indeed, by Theorem 1, the distribution F can be induced by a downward-uniform signal with

bounding function h given by (1). By Proposition 1, a collection of k conditionally i.i.d. downward-

uniform signals with bounding functions hi = h1/k also induces F .

The IID Blackwell Theorem shows that information about a continuous state can always be

decomposed into a sequence of conditionally i.i.d. signals. This implies that acquiring information

over time or from multiple informative independent sources imposes no constraint on the eventual

belief distribution of the receiver. Consequently, in persuasion problems with a continuous state

space, requiring the receiver to obtain information through several i.i.d. signals does not reduce

the sender’s optimal value.

This stands in sharp contrast to the binary-state setting of Kamenica and Gentzkow (2011),

where optimal signals are binary. Due to the atomic nature of the state space, a binary signal

cannot be replicated by any collection of informative, conditionally independent signals unless one

of the original signal’s realizations fully reveals the state. As a result, imposing a multi-signal

structure in that context results in a loss for the sender.

3.2 Optimism in learning

Consider a Bayesian agent whose posterior mean evolves over time due to information arrival. We

refer to this evolving posterior mean as a learning process. Suppose an analyst observes snapshots

11In fact, we prove a stronger result: the single-signal and multi-signal models induce not only the same joint

distribution over (θ, E[θ|s]), but also the same joint distribution over (θ, µ), where µ ∈ ∆(Θ) denotes the posterior

belief.
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of the agent’s belief distribution at two points: at t = 0, it’s given by F , and at t = 1, by G,

where G is majorized by F . From these snapshots, the analyst wants to make inferences about

the agent’s beliefs during the period t ∈ [0, 1]. A natural question arises: how optimistic can the

agent’s beliefs become during this interval? This notion is captured by τ -optimism (Definition 3).

A related question is: which learning processes maximize optimism?

Formally, the posterior mean of the Bayesian agent is captured by a continuous-time martingale

(Xt)t∈[0,1] with initial distributionX0 = F and terminal distributionX1 = G. By a splitting lemma

argument, exposure to information results in a martingale of posterior means and vice versa; every

martingale of posterior means can be a result of some exposure to information.12 Henceforth, we

identify learning processes and continuous-time martingales.

Definition 3. The τ -optimism of an agent in the learning process X = (Xt)t∈[0,1] is defined by

Optτ (X) = P
[
∃t ∈ [0, 1] : Xt ≥ τ

]
= P

[
max
t∈[0,1]

Xt ≥ τ

]
Consider a scenario in which the analyst observes the correlation between F and G. Namely,

the analyst can trace which types of agents ended up having which posterior mean as a function of

their initial beliefs. Given a correlation between F and G can one characterize the most optimistic

learning process?

For clarity of exposition, we assume that the state space is Θ = [0, 1].13 We consider the

following revelation strategy.

Definition 4. Given a continuous terminal distribution G, the Gradual Exposure to Bad News

(GEBN) learning process at time t ∈ [0, 1] exposes the agent to the realization of G in case it lies

in the interval [0, t]. Otherwise, no further information is provided.

The most optimistic learning process turns out to be the above GEBN.

Proposition 2 (Essentially, Dubins and Gilat (1978)). For every τ ∈ [0, 1], the GEBN learning

process maximizes τ -optimism across all learning processes with the same correlation of initial and

terminal distributions F and G.

The proof of Proposition 2 is relegated to Appendix B. Dubins and Gilat (1978) proved this

result for a point mass F , and the idea behind the proof in the appendix is to apply their result

pointwise, conditional on each realization of X0. For two-point G and one-point F , a version of

this result has recently appeared in an application to dynamic implementation (Koh, Sanguanmoo,

and Uzui, 2023).

12See Strassen (1965) for discrete time and Kellerer (1961) for continuous time.
13For a general Θ, the Definition 4 is modified so that, at time t ∈ [0, 1], all the realizations that belong to the

bottom t-quantile of G are revealed rather than realizations whose value is below t. This analog of the GEBN

process is the relevant one also in the more general case in which G admits atoms. All the results in this section

hold in these more general cases for the quantile variant of the GEBN process.
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This simple extension of Dubins and Gilat (1978) shows, given a correlation between F and

G, the best way to reveal information to maximize τ−optimism is by gradually revealing bad

news. A natural question is whether there exists an “optimal correlation” between F and G that

globally maximizes τ−optimism. We provide a positive answer to this question and show that the

correlation induced by the downward-uniform garbling is the optimal one.

We start by providing a general upper bound on optimism that applies to all correlations.

Recall that (t, Ĝ(t)) for t = T−1(τ) is the tangency point of the tangent line to Ĝ that passes

through (τ, F (τ)) (see Figure 2), and G(T−1(τ)) is the slope of this tangent.

Proposition 3. For every learning process with initial distribution F and terminal distribution

G, the agent is τ -optimistic with a probability of at most 1−G(T−1(τ)).

The proof intuition of Proposition 3 is relegated to the end of this section, while the formal

proof appears in Appendix B.

Proposition 3 is a generalization of the Hardy-Littlewood maximal inequality, which corresponds

to F being a point mass. Hardy-Littlewood inequality provides a bound on τ -optimism as a function

of the terminal distribution G only. The probability for τ -optimism is bounded from above by the

mass of the top quantile whose conditional expectation is τ .14 In our notation, it claims that the

probability of τ -optimism is bounded by 1− s where s is the slope of the tangent to Ĝ that passes

through the point (τ, E[G] + τ − 1). Proposition 3 argues that this bound can be improved by

considering the initial distribution too; The point through which the tangent passes increases from

(τ, E[G] + τ − 1) to (τ, F (τ)) which increases this slope; see Figure 5.

x
t τ

F̂ (x)

Ĝ(x)
slope 1

slope s

slope G(t)

(1, E[G])

(τ, E[G] + τ − 1)

Figure 5: α(t) is the difference between the slope of F̂ (lower curve) at T and the slope of Ĝ

(upper curve) at t.

The following example demonstrates that the upper bound on the optimism from Proposition 3

14The Hardy-Littlewood inequality immediately implies Doob’s maximal inequality. For a distribution G with

zero mean E[G] = 0 and P [G > 0] = p, we denote by Gq the distribution that equals 0 in the top q-quantile of G

and 0 otherwise, and we denote by q(τ) the mass of the quantile whose expectation is τ . Now the Hardy-Littlewood

inequality implies

Optτ ≤ q(τ) =
q(τ) · τ

τ
=

E[Gq(τ)]

τ
≤

E[Gp]

τ
=

E[max(G, 0)]

τ
.

which is precisely Doob’s maximal inequality.
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may be (and typically is) strictly higher than the level of optimism achieved by the GEBN process

of Proposition 2 for given correlation of F and G.

Example 4. Let F = Uniform({ 1
3 ,

2
3}) and let G = Uniform([0, 1]). The correlation of F and G is

given by G|(F = 1
3 ) = Uniform([ 1

12 ,
7
12 ]) and G|(F = 2

3 ) = Uniform([0, 1
12 ) ∪ ( 7

12 , 1]).

Figure 6 depicts the dynamic posterior belief conditional on the event that the agent has not

been exposed to the realization of G yet in the GEBN policy.

Figure 6: The upper function is the posterior of the agent with initial belief 2
3 conditional on the

state not being revealed till time t. The lower function is the posterior of the agent with initial

belief 1
3 conditional on the state not being revealed by time t. If the agent has initial belief 1

3 , the

state is revealed with probability 1 by time t = 7
12 , therefore the function is defined only for t ≤ 7

12 .

t

p

1
12

7
12

1

1
3

7
12

19
24

1

2
3

From these calculations, we can deduce the probability of τ -optimism for every value τ , and

it is depicted in Figure 7. For the case of F = Uniform({ 1
3 ,

2
3}) and G = Uniform([0, 1]), one can

calculate the bound of Proposition 3 on τ -optimism (for arbitrary correlations of F and G); its

graph is also depicted in Figure 7.

Even though the learning process is the most optimistic one (for the exogenously given correla-

tion), one can see that the GEBN learning process fails to reach the upper bound for 1
3 < τ < 19

24 .

This example raises the question: Are there correlations that induce higher optimism than others

under the most optimistic GEBN learning process? The answer to this question is positive. There

exists a correlation that simultaneously maximizes τ -optimism for all values of τ . This correlation

is the one induced by the downward-uniform garbling from Theorem 2.

Theorem 3. If the correlation between F and G is given by the downward-uniform signals, then

the GEBN learning process induces τ -optimism with the best-possible probability 1−G(T−1(τ)) for

every τ ∈ [0, 1].

In particular, we see that the bound from Proposition 3 is not only tight but also admits a

correlation that is simultaneously optimal for all thresholds. The proof intuition of Theorem 3 is
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Figure 7: The lower function captures the probability of τ -optimism for the given correlation in

the example (i.e., the upper-bound follows from Proposition 2). The upper function captures the

upper bound on optimism given by Proposition 3.

t

P [∃t : Xt ≥ τ ]

1
2
5
12

2
3

1
3

7
12

2
3

19
24

relegated to the end of this section, while the formal proof appears in Appendix B.

Intuitions via Persuasion Optimism has a natural interpretation in the context of dynamic

persuasion, where the learning process is not exogenously given but rather is designed by a strate-

gic sender. This interpretation is also convenient for building intuition about the results on

τ−optimism presented above.

Consider a dynamic setting in which a partially informed sender reveals information over con-

tinuous time to persuade a partially informed receiver (i.e., the agent) to make an irreversible

adoption decision. Let {L,H} be a binary state reflecting a product’s low or high quality. The

distribution G ∈ ∆([0, 1]) captures the partial information (i.e., distribution over beliefs) of the

sender about the quality being high. We assume that in the dynamic setting, the agent adopts

at the moment once her posterior mean (i.e., her posterior about the high quality) exceeds some

threshold τ .15 Notice that τ -optimism is equivalent to adoption in this dynamic persuasion setting,

which the sender aims to maximize.

More formally, F is the receiver’s initial information. The sender is more informed than the

receiver and holds the private information G that is majorized by F . The sender is allowed to

reveal information over time and hence can design the martingale (Xt)t∈[0,1]. Since the adoption

action is irreversible, we can assume without loss of generality that X1 = G because revealing

further information can never harm the sender.

The correlation between F and G can be either exogenously given or designed by the sender. We

15Immediate adoption can be rationalized if the interaction occurs over time [0,∞), the receiver is impatient

(namely, has a discount factor δ < 1), and the sender is patient (namely, has an average-limit utility). In such a

setting, immediate adoption is without loss of generality since the sender can arbitrarily slow down any information

revelation policy, thus enforcing immediate adoption.
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first describe an interpretation of an exogenously given correlation. Before the interaction, both the

sender and the receiver observe a public signal Spub and the sender additionally observes a private

signal Spriv. This creates a setting in which the correlation is exogenously given. Proposition 2

can be formulated in the context of dynamic persuasion as follows.

Corollary 3 (Reformulation of Proposition 2). In a setting with an exogenously given correlation

between F and G, the GEBN policy is optimal for the sender.

Another variant of the persuasion problem considers a sender who designs the correlation be-

tween F and G. The sender is partially informed about the state with the distribution of posteriors

G. Before the dynamic interaction starts, the sender is required to send partial information to the

receiver that will be at least as informative as F .16 In this setting, the policy of the sender con-

sists of two parts: the garbling of G to F and a continuous time information revelation policy.

Proposition 3 and Theorem 3 specify the optimal policy in this setting.

Corollary 4 (Reformulation of Proposition 3). The sender cannot induce adoption with a proba-

bility higher than 1−G(T−1(τ)).

Corollary 5 (Reformulation of Theorem 3). In a setting with a designed correlation between F

and G, the downward-uniform signaling followed by the GEBN policy is optimal for the sender and

induces adoption with probability 1−G(T−1(τ)) for every τ ∈ [0, 1].

Notice that the policy in Corollary 5 is independent of τ . Therefore, in more general settings

in which the threshold τ is unknown to the sender, or alternatively, the sender faces multiple

receivers with different thresholds τ the same policy is the one to maximize the expected number

of adopters.

Remark 2. We recall that the function α = α(t) = F (T (t)) − G(t) played a central role in the

explicit construction of the function h(t)—the generator of the downward-uniform signals; see

Section 2.1. An economic interpretation for the function α can be deduced from Corollary 5.

Given a threshold τ the persuasion value for the sender is 1 − G(T−1(τ)). If, instead, the sender

doesn’t try to manipulate the receiver and simply sends no information the probability of adoption

would be 1−F (τ). The gain from persuasion is the difference between these two probabilities and

it equals F (τ)−G(T−1(τ)) = F (T (t))−G(t) = α(t) for t = T−1(τ).

The persuasion perspective not only allows us to deduce insights about an intriguing dynamic

persuasion model but also can serve as a mathematical tool for proving these results. Below, we

sketch the ideas of Corollaries 4 and 5, which are just equivalent formulations of Proposition 3 and

Theorem 3.

16Such a requirement might arise from regulations that require the producer to provide some information about

the product before entering the market.
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Proof sketch of Proposition 3 and Corollary 4 The key idea is to bound the value of the

dynamic persuasion problem by the analogous static persuasion problem. In the static problem,

the sender reveals information in a single round; this information must be less informative than G

(because this is what she knows) but more informative than F (because this is what the receiver

initially knows).

Notice that any persuasive dynamic policy can be translated into a static one with the same

probability of adoption: the sender commits to perform a realization of the martingale and reports

whether this realization visits the interval [τ, 1]. If it does, by the martingale property, the receiver’s

posterior lies in [τ, 1] and she takes the adoption action. This implies that indeed the value of the

dynamic problem is bounded by the value of the static one.

To compute the value of the static problem, we formulate the optimization problem in the

integrated CFDs space. We optimize over the set of concave functions Ĥ sandwiched in between

Ĝ ≤ Ĥ ≤ F̂ (i.e., the informativeness restrictions). The left derivative at the point τ is the

probability of non-adoption and hence we wish to minimize it. This objective is simple enough to

be solved explicitly. The minimizing concave function Ĥ = M̂ is the one depicted in Figure 8.

x
t∗ τ 1

Ĝ

F̂

Figure 8: The optimal function M̂τ is displayed in blue.

Proof sketch of Theorem 3 and Corollary 5 We show that the distribution of posterior

means along the GEBN process for t ∈ [0, 1] passes through all the distributions {Mτ}τ∈[0,1] where

Mτ is the distribution whose integrated CDF is M̂τ in Figure 8. This proves the theorem because

Proposition 3 shows that the same distribution serves as an upper bound on τ -optimism.

To see that the downward-uniform garbling passes through all the Mτ distributions,17 we trace

the distribution of posteriors at every time t. We show that agent types who initially receive

a signal s ≤ h(t) have the same posterior mean as the agent who received the signal s = h(t).

Additionally, the posterior mean of agent types who initially receive a signal s > h(t) remains

unchanged. See Figure 9. These two properties pin down the distribution to be exactly of the form

Mτ .

17In fact, the downward-uniform garbling is the unique garbling that enjoys this property.
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θ

h

t

s < h(t)

h−1(s)

s > h(t)

T

Figure 9: The top horizontal line is the belief’s support of an agent whose initial posterior mean

is above T . The bottom horizontal line is the belief’s support of an agent whose initial posterior

mean is below T , and hence at time t it is exactly T .
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A Proof of Theorem 2

The proof has two parts. First, we verify that the function h given in (1) and functions T and α

are well-defined and satisfies the properties needed to define a downward-uniform signal, e.g., h

is positive and monotone. Then, we effectively reverse the steps of the heuristic derivation from

Section 2.3, starting with the formula and confirming that the corresponding downward-uniform

induces the desired distribution of beliefs.

Recall the setting. A state θ is distributed on an open interval Θ = (θ, θ) ⊂ R with θ, θ ∈

R∪{−∞,+∞} according to a non-atomic distribution G. We do not assume that G has a density

or that, if it has a density, that this density satisfies any regularity assumptions. Without loss

of generality, θ and θ are the leftmost and the rightmost points of the support of G, respectively.

Let F be another distribution on Θ that has a finite first moment and strictly majorizes G, i.e.,

F̂ (x) < Ĝ(x) for all x ∈ Θ and F̂ (θ) − Ĝ(θ) = 0, where F̂ and Ĝ denote the integrated CDFs.18

No additional assumptions are imposed on F , in particular, it is allowed to have atoms.

Given G and F , we consider a downward-uniform signal s with a function h given by

h(t) = α(t) · exp
(∫ t

t0

1

α(x)
dG(x)

)
, (6)

where t0 is some fixed point in Θ,

α(t) = F (T (t))−G(t),

and T = T (t) is the solution to

Ĝ(t) + (T − t)G(t) = F̂ (T ) (7)

with the property T ∈ (t, θ).

Our goal is to show that the distribution of posterior means E[θ|s] induced by the signal s

equals F . The first step is showing that the signal s is well-defined, which boils down to checking

that the function h is well-defined and non-decreasing.

Checking that T is well-defined, continuous, and monotone We begin with verifying that,

for any t ∈ Θ, a solution T to equation (7) with the property T ∈ (t, θ) exists and is unique. Fix

t ∈ Θ and consider a function φt(T ) = F̂ (T )− Ĝ(t)− (T − t)G(t). Hence, φt(T ) = 0 is equivalent

to (7). Since, φt is continuous, we invoke the intermediate value theorem to deduce the existence

of a zero. For T = t, we have φt(t) < 0 by the assumption of strict majorization. On the other

hand, φt(T ) > 0 for T in the vicinity of θ. To see that, we rewrite φt as follows:

φt(T ) =
(
F̂ (T )− Ĝ(T )

)
+
(
Ĝ(T )− (Ĝ(t)− (T − t)G(t))

)
.

18Here and below, the values of an expression at θ, θ in the case of θ = −∞ or θ = +∞ are to be understood as

the corresponding limits.
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The first term converges to zero as T → θ, by the definition of majorization. For the second term,

note that Ĝ is convex, so its graph lies above the tangent line at t, i.e., Ĝ(T ) ≥ Ĝ(t) + (T − t)G(t)

for all T. Moreover, the difference between the left-hand side and the right-hand side is non-

decreasing in T for T ≥ t. Hence, the second term is nonnegative and non-decreasing in T . If it

were identically zero for all T ≥ t, then Ĝ would coincide with its tangent line and thus be linear

on [t, θ), implying that G places no mass on this interval. This contradicts the assumption that

θ is the upper endpoint of the support of G. We conclude that φt(T ) > 0 for T in the vicinity

of θ. Since φt is continuous, φt(t) < 0, and φt(T ) is positive for T in the vicinity of θ, there exists

T ∈ (t, θ) such that φt(T ) = 0. Such T is unique since φt is a convex function taking both positive

and negative values. Thus, a function t → T (t) is well-defined.

We now check that T (t) is continuous and non-decreasing. Consider t, t′ ∈ Θ such that t < t′.

Denote T = T (t) and T ′ = T (t′) and show T ≤ T ′. By definition, φt(T ) = 0 and φt′(T
′) = 0. By

the convexity of Ĝ, we get Ĝ(t′) ≥ Ĝ(t) + (t′ − t)G(t). Plugging this into the equation satisfied

by T ′, we obtain φt(T
′) ≥ 0. Since φt is convex and T is its only zero, we conclude that T ′ ≥ T

and thus T is a non-decreasing function of 19 t. We verify continuity of T (t) for all t ∈ Θ. By

monotonicity, T admits left and right limits at t which we denote by T− and T+, respectively.

Approaching t from the left and from the right in (7) and taking into account the continuity of

F̂ , Ĝ and G, we obtain that both T− and T+ must be solutions at the point t. Since the solution

is unique, T− = T+ = T , and thus T is a continuous function of 20 t.

Checking that h is well-defined, positive, and monotone Consider the function α(t) =

F (T (t))−G(t) from the definition (6) of the function h. First, we show positivity of α which yields

positivity of h and ensures the convergence of the integral in (6).

By the convexity of F̂ , we have F̂ (t) ≥ F̂ (T ) + (t − T )F (T ). Expressing F̂ (T ) from this

inequality and plugging it into (7), we obtain F (T )−G(t) ≥ Ĝ(t)−F̂ (t)
T−t . Equivalently,

α(t) ≥ Ĝ(t)− F̂ (t)

T (t)− t
> 0. (8)

By strict majorization, the right-hand side is positive. Since Ĝ, F̂ , and T are continuous, we

conclude that α is bounded from below by a strictly positive function that is continuous on Θ.

Consequently, 1/α is also non-negative and bounded from above by a continuous function ensuring

the convergence of
∫ t

t0
1

α(x) dG(x) for t ∈ Θ. Thus h is well-defined. Since α is positive, so is h.

19 In fact, the inequality T (t′) ≥ T (t) is strict if and only if the interval (t, t′) carries positive G mass, i.e.,

G(t′) > G(t). Indeed, for continuous G, this is exactly the case when Ĝ(t′) ≥ Ĝ(t) + (t′ − t)G(t) holds as a strict

inequality.
20If G admits a continuous density g, then φt(T ) = 0 satisfies the conditions of the implicit function theorem and

thus T in not only continuous but also continuously differentiable with

T ′(t) =

(
T (t)− t

)
g(t)

F (T (t))−G(t)
.

In particular, we see that the derivative is strictly positive unless g(t) = 0 in agreement with Footnote 19. Note

that the denominator is never zero: it equals α(t) and we verify that α > 0 below.
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We now verify that h is non-decreasing. Recall that a function is of bounded variation if it

can be expressed as the difference of two non-decreasing functions. For instance, α is of bounded

variation. Any such function β admits a generalized derivative—the Stieltjes derivative dβ—a

signed measure whose cumulative distribution function (CDF) is β. Classical derivatives are a

special case: differentiable β yields dβ = β′(x) dx, while jumps in β correspond to atoms of dβ.

Crucially, Stieltjes derivatives obey the classical rules of calculus.21

Define γ(t) =
∫ t

t0
1

α(x) dG(x). Then γ is of bounded variation as an indefinite Stieltjes integral,

and so is h = α · exp(γ), since bounded variation is preserved under multiplication and smooth

composition. Because G is non-atomic, γ is continuous, and thus exp(γ) shares no discontinuities

with α. We can therefore apply the product rule and obtain

dh = exp(γ) dα+ αd exp(γ)

= exp(γ) dα+ α exp(γ) dγ

= exp(γ) dα+ α exp(γ) · 1
α
dG

= exp(γ)(dα+ dG)

= exp(γ) dF (T ),

where we used dα + dG = dF (T ) by definition. Since F and T are non-decreasing, dF (T ) is a

non-negative measure. Hence dh is non-negative, and its CDF h is non-decreasing as claimed.

Expressing α through h We now derive an expression for α in terms of h. Rewriting (6), we

obtain
α(t)

h(t)
= exp

(
−
∫ t

t0

1

α(x)
dG(x)

)
.

The right-hand side is of bounded variation, as is its logarithm, so both α
h and ln α

h inherit this

property. Taking logarithms and computing the Stieltjes derivative yields

d
(
ln

α

h

)
= − 1

α
dG.

By the chain rule for Stieltjes derivatives,

d
(
ln

α

h

)
=

1

α/h
d
(α
h

)
,

and hence, multiplying both sides by α
h ,

d
(α
h

)
= − 1

h
dG.

We integrate from t0 and get

α(t)

h(t)
− α(t0)

h(t0)
= −

∫ t

t0

1

h(x)
dG(x).

21If α and β are functions of bounded variation with no common discontinuities, then the product α · β is also of

bounded variation, and d(α ·β) = β dα+αdβ. If γ is of bounded variation and f is continuously differentiable, then

β = f(γ) is of bounded variation and d(f(γ)) = f ′(γ) dγ. Finally, an indefinite Stieltjes integral γ(t) =
∫ t
t0

q(x) dλ(x),

for measurable q such that the integral converges absolutely, defines a function of bounded variation with dγ = q dλ.
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Using the identity h(t0) = α(t0), we simplify

α(t) = h(t)

(
1−

∫ t

t0

1

h(x)
dG(x)

)
. (9)

This representation admits an alternative form

α(t) = h(t) ·
∫ θ

t

1

h(x)
dG(x), (10)

since that α(t) → 0 as t → θ. Indeed, θ is the highest point of the support of G. Since G is

continuous, we have G(t) → 1 as t → θ. Moreover, because F majorizes G, the distribution F

cannot have an atom at θ, and thus F (T (t)) → 1 as T (t) is squeezed between t and θ. Consequently,

α(t) = F (T (t)) − G(t) → 0. Given that h is strictly positive and increasing, this asymptotic

behavior is only compatible with (9) if∫ t̄

t0

1

h(x)
dG(x) = 1,

which22 leads to (10).

Computing the induced distribution of posterior means We now show that the downward-

uniform signal defined by the function h induces the distribution of posterior means F . The argu-

ment proceeds in two steps. First, we establish that the posterior mean corresponding to a signal

realization s is equal to T (h−1(s)). Second, we use this identity to prove that the unconditional

distribution of posterior means is indeed F .

To compute the posterior mean induced by a realization s, observe that the conditional density

of the signal given the state θ is 1
h(θ)1{s≤h(θ)}, and θ is distributed according to G. Therefore,

the joint distribution of (θ, s) has is distributed according to 1
h(θ)1{h(θ)≥s} dG(θ) ds. The posterior

distribution of θ given s is thus proportional to 1
h(θ)1{h(θ)≥s} dG(θ), so the posterior mean is

E[θ|s] =

∫
{θ : h(θ)≥s}

θ
h(θ) dG(θ)∫

{θ : h(θ)≥s}
1

h(θ) dG(θ)
. (11)

We now establish the identity relating the posterior mean and the function T

E[θ|s] = T (h−1(s)), (12)

where h−1(s) is the generalized inverse defined as min{θ : h(θ) ≥ s}. The minimum is attained by

the right-continuity of h. Comparing (11) and (12), we see that it is enough to prove the identity

T (t) =

∫ θ

t
θ

h(θ) dG(θ)∫ θ

t
1

h(θ) dG(θ)
, (13)

which expresses T , defined in (7), in terms of G and h. To derive this, we differentiate both sides

of (7). Since T is continuous and non-decreasing, both sides admit Stieltjes derivatives

G(t) dt+ (T (t)− t) dG(t) +G(T ) dT (t)−G(t) dt = F (T ) dT (t).

22This identity may be of independent interest, as it constrains the growth of h.
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Canceling G(t) dt and using α(t) = F (T (t))−G(t), we get

α(t) dT (t)− T (t) dG(t) = −t dG(t).

Expressing α using (5) and dividing both sides by h(t) gives(∫ θ

t

1

h(θ)
dG(θ)

)
dT (t) + T (t)

(
1

h(t)
dG(t)

)
= − t

h(t)
dG(t).

The left-hand side is the Stieltjes derivative of the product

d

(
T (t) ·

∫ θ

t

1

h(θ)
dG(θ)

)
= − t

h(t)
dG(t).

Integrating both sides and rearranging terms yields

T (t) =

∫ θ

t
θ

h(θ) dG(θ) + C∫ θ

t
1

h(θ) dG(θ)
,

where C is a constant independent of t. Letting t → θ, we conclude that C = 0 thus confirming

identity (12).

This identity lets us express the distribution of posterior means through the distribution of

signals. Let K(s) be the CDF of signals

K(s) =

∫
Θ

P (s′ ≤ s | θ) dG(θ) =

∫
Θ

min(s, h(θ))

h(θ)
dG(θ).

Setting s = h(t) and using the fact that h is non-decreasing, we obtain

K(h(t)) =

∫
{θ<t}

dG(θ) + h(t)

∫
{θ≥t}

dG(θ)

h(θ)
= G(t) + h(t)

∫ θ

t

dG(θ)

h(θ)
.

From identity (10), the second term equals α(t). By the definition α(t) = F (T (t)) − G(t), we

conclude

K(h(t)) = F (T (t)). (14)

Finally, let M(s) = E[θ|s] be the posterior mean induced by signal s, and FM its CDF. We now

show that FM = F . It is enough to demonstrate that FM (T (t)) = F (T (t)) for all t ∈ Θ, which

implies FM = F since T maps Θ onto itself.

Using (11), (14), and the monotonicity of T , we obtain

FM (T (t)) = P (M(s) ≤ T (t))

(11)
= P (T (h−1(s)) ≤ T (t))

= P (s ≤ h(t)) = K(h(t))

(14)
= F (T (t)).

We conclude that the distribution of posterior means induced by the downward-uniform signal s

with bounding function h given by (6) is equal to the target distribution F , completing the proof.
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B Omitted Proofs from Section 3

Proof of Proposition 1. We establish the proof by identifying a one-dimensional sufficient statistic

for the collection of signals and showing it is distributionally equivalent to the sufficient statistic

of the asserted single signal.

For a non-decreasing right-continuous function h : Θ → R+ we define its generalized inverse

h−1 : R+ → Θ as the quantile function h−1(y) = min{θ ∈ [θ, θ] : h(θ) ≥ y}. This construction

ensures that the inverse is well-defined and non-decreasing. Crucially, for any signal realization y,

the two events {y ≤ h(θ)} and h−1(y) ≤ θ coincide.

We now consider a collection of conditionally independent downward-uniform signals s =

(s1, . . . , sk) with bounding functions h1, . . . , hk. Without loss of generality, we can assume that

these functions are right-continuous. Indeed, replacing a non-decreasing function h with its right-

continuous version h+(t) = limε→0+ h(t) requires changing it at at most countable number of

points. Since the distribution of the state is non-atomic, such a change corresponds to a zero

measure of states and thus results in an equivalent signal.

The likelihood of observing s given θ is:

L(s|θ) =
k∏

i=1

1

hi(θ)
1{si≤hi(θ)}.

Rewriting each indicator using the generalized inverse and denoting h(θ) =
∏

i hi(θ), we obtain

L(s|θ) = 1

h(θ)

k∏
i=1

1{h−1
i (si)≤θ} =

1

h(θ)
1{maxi h

−1
i (si)≤θ}.

The likelihood depends on the signal vector s only through the statistic m(s) = maxi h
−1
i (si),

which is therefore sufficient for θ.

Next, we show that the state-conditional distribution of m(s) is identical to that of a sufficient

statistic from a single downward-uniform signal with bounding function h(θ) =
∏

i hi(θ). We

compute the CDF of m(s) conditional on θ. For any t ∈ Θ:

Fm(s)|θ(t) = P (m(s) ≤ t|θ) = P
(
max

i
h−1
i (si) ≤ t

∣∣∣θ)
=

k∏
i=1

P (h−1
i (si) ≤ t|θ),

where the last identity holds by conditional independence. The event h−1
i (si) ≤ t is identical to

si ≤ hi(t). Since si is uniformly distributed on [0, hi(θ)] conditional on θ, the probability of this

event is hi(t)
hi(θ)

. Thus, the CDF of the sufficient statistic is:

Fm(s)|θ(t) =

k∏
i=1

hi(t)

hi(θ)
=

h(t)

h(θ)
.

Now, consider a single downward-uniform signal s′ with bounding function h(θ). Its sufficient

statistic is m′(s′) = h−1(s), where h−1 is the generalized inverse of h. The conditional CDF of this
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statistic is:

Fm′(s)|θ(t) = P (h−1(s′) ≤ t|θ) = P (s′ ≤ h(t)|θ) = h(t)

h(θ)
.

Since the sufficient statistics m(s) and m′(s′) have identical conditional distributions for any θ,

the two information structures induce the same distribution of posterior beliefs and are therefore

equivalent.

Proof of Proposition 2. Dubins and Gilat (1978) formulate and prove a particular case of Propo-

sition 2 for a Dirac measure F = δx. We now show how to derive the general case from their

result.

Let X be the GEBN learning process and let Mτ
x = P [maxt∈[0,1] Xt ≥ τ |X0 = x] for every x

and τ . Let Y = (Yt)t∈[0,1] be any other learning process with law Q such that Y0 ∼ F and Y1 ∼ G

and the conditional distributions Q(Y1 ∈ B|Y0 = x) = P (X1 ∈ B|X0 = x) for any Borel subset

B ⊆ R and almost every x with respect to F . By Dubins and Gilat (1978),

Q[ max
t∈[0,1]

Yt ≥ τ |Y0 = x] ≤ Mτ
x

for every x and for every τ . Therefore, for every τ ,

Optτ (Y ) =

∫
Q[ max

t∈[0,1]
Yt ≥ τ |Y0 = x]dF (x) ≤

∫
Mτ

xdF (x) = Optτ (X),

as desired.

Proof of Proposition 3. We denote by Dτ the dynamic persuasion problem in which the sender

reveals information to a receiver who immediately adopts once her posterior exceeds τ . The

martingale, which captures receiver’s posterior over time is restricted to have initial distribution F

and terminal distribution G. We denote by Sτ the static persuasion problem in which the sender

reveals information to a receiver and is restricted to reveal information that is less informative

than G but more informative than F ; Namely she can reveal any H such that F ≤m H ≤m G.

Proposition 3 essentially states that val(Dτ ) = 1−G(T−1(τ)).

Notice that val(Dτ ) ≤ val(Sτ ) because a possible signaling policy in the static interaction is the

one in which the sender draws a realization of the martingale and reports whether at some time t it

exceeded τ . Such a policy is persuasive because the martingale condition ensures that once τ has

been reached, the expectation at time t = 1 will be τ . Namely, every policy in the dynamic setting

has a corresponding signaling policy in the static setting with the same value for the sender.

For a CDF H we denote H−(x) = limϵ→0,ϵ>0 H(x− ϵ) the CDF that excludes the atom on x (if

such exists). From the left-differentiable function Ĥ(x) =
∫ x

0
H(y)dy we denote its left derivative

by

Ĥ ′
−(x) = lim ϵ → 0, ϵ > 0

Ĥ(x)− Ĥ(x− ϵ)

ϵ

and we notice that Ĥ ′
−(x) = H−(x). We denote by H the set of all convex functions Ĥ(x) with

left derivative bounded by 0 ≤ Ĥ ′
−(x) ≤ 1 that are sandwiched in between F̂ (x) ≤ Ĥ(x) ≤ Ĝ(x)
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for all x ∈ [0, 1]. Now val(Sτ ) can be elegantly written in the domain of the integrated CDFs.

val(Sτ ) = max
H:F≤mH≤mG

(1−H−(τ)) = max
Ĥ∈H

(1− Ĥ ′
−(τ)) = 1− min

Ĥ∈H
Ĥ ′

−(τ) (15)

The M̂τ ∈ H that minimizes the left derivative at the point τ is the one depicted in Figure

8. Namely, we draw a tangent to the function Ĝ from the point (τ, F̂ (τ)) and denote the tangent

point by t∗. Now M̂τ equals Ĝ in the interval [0, t∗], it equals the tangent in the interval [t∗, τ ],

and it equals F̂ in the interval [τ, 1].

The argument for M̂τ being the minimizer of the left derivative follows from two arguments.

First, for every y ∈ [F̂ (τ), Ĝ(τ)] the solution for the minimization problem

min
Ĥ∈H,Ĥ(τ)=y

Ĥ ′
−(τ)

is obtained by drawing a tangent of the function Ĝ from the point (τ, y) with the tangent point t

and letting Ĥ being equal to the tangent in the interval [t, τ ]. Indeed any function Ĥ ≤ Ĝ with

a lower left derivative will violate convexity. Second, the slope of the tangent to Ĝ from (τ, y)

(i.e., the left derivative at τ) is monotonically increasing in y. Therefore, the minimizing choice is

y = F̂ (τ) which exactly yields the minimizer M̂τ .

Notice that the minimal value for the minimizer M̂τ is M̂ ′
τ−(τ) = Ĝ′(t∗) = G(t∗) = G(T−1(τ))

and hence we conclude by Equation (15) that

val(Dτ ) ≤ val(Sτ ) = 1− M̂ ′
−(τ) = 1−G(T−1(τ)).

To see that 1 − G(T−1(τ)) is achievable, we observe that F̂ ≤ M̂τ ≤ Ĝ. So, by Blackwell’s

theorem, there exists a two-step martingale (say times t = 0, 1
2 , 1) that consists of spreading F to

Mτ at time t = 1
2 and spreading Mτ to G at time t = 1. The maximal optimism will be achieved

at time t = 1
2 .

Proof of Theorem 3. Denote by Y ∈ ∆([0, 1]) the belief of a receiver who gets the signal s = 0

about the state θ ∈ [0, 1] in the downward-uniform garbling. For a threshold τ , let t ∈ [0, 1] be the

unique value for which E[Y |Y ≥ t] = τ = T . We argue that at time t of the GRBN process the

distribution of posteriors means of the receiver is precisely Mτ from the proof of Lemma 3. This

will conclude the proof.

If the state has not been revealed yet and the receiver’s signal is s ≤ h(t) then her posterior

mean is E[Y |Y ≥ t] = T . Saying it differently, if the state has not been revealed yet and the

receiver’s posterior mean at time t = 0 was (weakly) below T , then her current posterior mean is

T . See Figure 9.

If the state has not been revealed yet and the receiver’s signal is s > h(t) then her posterior

remains unchanged because she initially knew that θ > t with probability 1. Saying it differently,

if the state has not been revealed yet and the receiver’s posterior mean at time t = 0 exceeded T ,

it remains unchanged. See Figure 9.
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Finally, if the state has been revealed the receiver adopts this state as her posterior mean.

Therefore at every point of time t the CDF of the distribution of posterior means denoted by

Ht has the following properties:

• Ht(x) = G(x) for every x ∈ [0, t]; this corresponds to the event of revealing the state.

• Ht(x) = F (x) for every x ∈ [T, 1]; this corresponds to the population of receivers whose

signal is s > h(t) in the event of not revealing the state.

• All the remaining mass of Ht is concentrated on an atom on T ; this corresponds to the

population of receivers whose signal is s ≤ h(t) in the event of not revealing the state.

Expressing these three properties in the integrated CDF space implies Ĥt(x) = Ĝ(x) for every

x ∈ [0, t], Ĥt(x) = F̂ (x) for every x ∈ [T, 1], and Ĥt(x) is linear in (t, T ). Notice that these

three properties pin down uniquely the function Ht and this function is exactly Mτ for T = τ ; see

Figure 8.
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